Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Ito's construction of Markovian solutions to stochastic equations driven by a Lévy noise is extended to nonlinear distribution dependent integrands aiming at the effective construction of linear and nonlinear Markov semigroups and the corresponding processes with a given pseudo-differential generator. It is shown that a conditionally positive integro-differential operator (of the Lévy-Khintchine type) with variable coefficients (diffusion, drift and Lévy measure) depending Lipschitz continuously on its parameters (position and/or its distribution) generates a linear or nonlinear Markov semigroup, where the measures are metricized by the Wasserstein-Kantorovich metrics. This is a non-trivial but natural extension to general Markov processes of a long known fact for ordinary diffusions.
| Язык оригинала | английский |
|---|---|
| Страницы (с-по) | 95-123 |
| Число страниц | 29 |
| Журнал | Probability Theory and Related Fields |
| Том | 151 |
| Номер выпуска | 1 |
| DOI | |
| Состояние | Опубликовано - окт 2011 |
ID: 86493481