DOI

Ito's construction of Markovian solutions to stochastic equations driven by a Lévy noise is extended to nonlinear distribution dependent integrands aiming at the effective construction of linear and nonlinear Markov semigroups and the corresponding processes with a given pseudo-differential generator. It is shown that a conditionally positive integro-differential operator (of the Lévy-Khintchine type) with variable coefficients (diffusion, drift and Lévy measure) depending Lipschitz continuously on its parameters (position and/or its distribution) generates a linear or nonlinear Markov semigroup, where the measures are metricized by the Wasserstein-Kantorovich metrics. This is a non-trivial but natural extension to general Markov processes of a long known fact for ordinary diffusions.

Язык оригиналаанглийский
Страницы (с-по)95-123
Число страниц29
ЖурналProbability Theory and Related Fields
Том151
Номер выпуска1
DOI
СостояниеОпубликовано - окт 2011

    Предметные области Scopus

  • Анализ
  • Теория вероятности и статистика
  • Статистика, теория вероятности и теория неопределенности

ID: 86493481