DOI

The sum of elliptic integrals simultaneously determines orbits in the Kepler problem and the addition of divisors on elliptic curves. Periodic motion of a body in physical space is defined by symmetries, whereas periodic motion of divisors is defined by a fixed point on the curve. The algebra of the first integrals associated with symmetries is a well-known mathematical object, whereas the algebra of the first integrals associated with the coordinates of fixed points is unknown. In this paper, we discuss polynomial algebras of nonpolynomial first integrals of superintegrable systems associated with elliptic curves.

Язык оригиналаанглийский
Страницы (с-по)353-369
Число страниц17
ЖурналRegular and Chaotic Dynamics
Том24
Номер выпуска4
DOI
СостояниеОпубликовано - 1 июл 2019

    Предметные области Scopus

  • Математика (разное)

ID: 44990465