Standard

THE HYPODIFFERENTIAL DESCENT METHOD IN THE PROBLEM OF CONSTRUCTING AN OPTIMAL CONTROL. / Фоминых, А. В.

в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. СЕРИЯ 10: ПРИКЛАДНАЯ МАТЕМАТИКА, ИНФОРМАТИКА, ПРОЦЕССЫ УПРАВЛЕНИЯ, Том 12, № 3, 2016, стр. 106-125.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Фоминых, АВ 2016, 'THE HYPODIFFERENTIAL DESCENT METHOD IN THE PROBLEM OF CONSTRUCTING AN OPTIMAL CONTROL', ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. СЕРИЯ 10: ПРИКЛАДНАЯ МАТЕМАТИКА, ИНФОРМАТИКА, ПРОЦЕССЫ УПРАВЛЕНИЯ, Том. 12, № 3, стр. 106-125. https://doi.org/10.21638/11701/spbu10.2016.310

APA

Фоминых, А. В. (2016). THE HYPODIFFERENTIAL DESCENT METHOD IN THE PROBLEM OF CONSTRUCTING AN OPTIMAL CONTROL. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. СЕРИЯ 10: ПРИКЛАДНАЯ МАТЕМАТИКА, ИНФОРМАТИКА, ПРОЦЕССЫ УПРАВЛЕНИЯ, 12(3), 106-125. https://doi.org/10.21638/11701/spbu10.2016.310

Vancouver

Фоминых АВ. THE HYPODIFFERENTIAL DESCENT METHOD IN THE PROBLEM OF CONSTRUCTING AN OPTIMAL CONTROL. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. СЕРИЯ 10: ПРИКЛАДНАЯ МАТЕМАТИКА, ИНФОРМАТИКА, ПРОЦЕССЫ УПРАВЛЕНИЯ. 2016;12(3):106-125. https://doi.org/10.21638/11701/spbu10.2016.310

Author

Фоминых, А. В. / THE HYPODIFFERENTIAL DESCENT METHOD IN THE PROBLEM OF CONSTRUCTING AN OPTIMAL CONTROL. в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. СЕРИЯ 10: ПРИКЛАДНАЯ МАТЕМАТИКА, ИНФОРМАТИКА, ПРОЦЕССЫ УПРАВЛЕНИЯ. 2016 ; Том 12, № 3. стр. 106-125.

BibTeX

@article{260e180be1314c6480c95d42e5a09df7,
title = "THE HYPODIFFERENTIAL DESCENT METHOD IN THE PROBLEM OF CONSTRUCTING AN OPTIMAL CONTROL",
abstract = "This paper considers the problem of optimal control of an object, whose motion is described by a system of ordinary differential equations. The original problem is reduced to the problem of unconstrained minimization of a nonsmooth functional. For this, the necessary minimum conditions in terms of subdifferential and hypodifferential are determined. A class of problems, for which these conditions are also sufficient, is distinguished. On the basis of these conditions, the subdifferential descent method and the hypodifferential descent method are applied to the considered problem. The application of the methods is illustrated by numerical examples. Refs 16. Tables 4.",
keywords = "nonsmooth functional, variational problem, program control, hypodifferential descent method",
author = "Фоминых, {А. В.}",
year = "2016",
doi = "10.21638/11701/spbu10.2016.310",
language = "Английский",
volume = "12",
pages = "106--125",
journal = " ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ",
issn = "1811-9905",
publisher = "Издательство Санкт-Петербургского университета",
number = "3",

}

RIS

TY - JOUR

T1 - THE HYPODIFFERENTIAL DESCENT METHOD IN THE PROBLEM OF CONSTRUCTING AN OPTIMAL CONTROL

AU - Фоминых, А. В.

PY - 2016

Y1 - 2016

N2 - This paper considers the problem of optimal control of an object, whose motion is described by a system of ordinary differential equations. The original problem is reduced to the problem of unconstrained minimization of a nonsmooth functional. For this, the necessary minimum conditions in terms of subdifferential and hypodifferential are determined. A class of problems, for which these conditions are also sufficient, is distinguished. On the basis of these conditions, the subdifferential descent method and the hypodifferential descent method are applied to the considered problem. The application of the methods is illustrated by numerical examples. Refs 16. Tables 4.

AB - This paper considers the problem of optimal control of an object, whose motion is described by a system of ordinary differential equations. The original problem is reduced to the problem of unconstrained minimization of a nonsmooth functional. For this, the necessary minimum conditions in terms of subdifferential and hypodifferential are determined. A class of problems, for which these conditions are also sufficient, is distinguished. On the basis of these conditions, the subdifferential descent method and the hypodifferential descent method are applied to the considered problem. The application of the methods is illustrated by numerical examples. Refs 16. Tables 4.

KW - nonsmooth functional

KW - variational problem

KW - program control

KW - hypodifferential descent method

U2 - 10.21638/11701/spbu10.2016.310

DO - 10.21638/11701/spbu10.2016.310

M3 - статья

VL - 12

SP - 106

EP - 125

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

SN - 1811-9905

IS - 3

ER -

ID: 7615642