Standard

The Euler characteristic of a random algebraic hypersurface. / Podkorytov, S. S.

в: Journal of Mathematical Sciences , Том 104, № 4, 01.01.2001, стр. 1394-1398.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Podkorytov, SS 2001, 'The Euler characteristic of a random algebraic hypersurface', Journal of Mathematical Sciences , Том. 104, № 4, стр. 1394-1398. https://doi.org/10.1023/A:1011306603637

APA

Vancouver

Author

Podkorytov, S. S. / The Euler characteristic of a random algebraic hypersurface. в: Journal of Mathematical Sciences . 2001 ; Том 104, № 4. стр. 1394-1398.

BibTeX

@article{ccd5aebe2e1040bda6da8ae4cc26b6e9,
title = "The Euler characteristic of a random algebraic hypersurface",
abstract = "We calculate the mean value of the Euler characteristic of the hypersurface in ℝPd (d odd) defined by a random polynomial of given degree under the condition that the polynomial has normal O(d+1)-invariant distribution with zero mean.",
author = "Podkorytov, {S. S.}",
year = "2001",
month = jan,
day = "1",
doi = "10.1023/A:1011306603637",
language = "English",
volume = "104",
pages = "1394--1398",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - The Euler characteristic of a random algebraic hypersurface

AU - Podkorytov, S. S.

PY - 2001/1/1

Y1 - 2001/1/1

N2 - We calculate the mean value of the Euler characteristic of the hypersurface in ℝPd (d odd) defined by a random polynomial of given degree under the condition that the polynomial has normal O(d+1)-invariant distribution with zero mean.

AB - We calculate the mean value of the Euler characteristic of the hypersurface in ℝPd (d odd) defined by a random polynomial of given degree under the condition that the polynomial has normal O(d+1)-invariant distribution with zero mean.

UR - http://www.scopus.com/inward/record.url?scp=52549131389&partnerID=8YFLogxK

U2 - 10.1023/A:1011306603637

DO - 10.1023/A:1011306603637

M3 - Article

AN - SCOPUS:52549131389

VL - 104

SP - 1394

EP - 1398

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 4

ER -

ID: 49886702