Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
The essential spectrum of some unbounded Jacobi matrices : A generalization of the Last–Simon approach. / Boutet de Monvel, Anne; Janas, Jan; Naboko, Serguei.
в: Journal of Approximation Theory, Том 227, 01.03.2018, стр. 51-69.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - The essential spectrum of some unbounded Jacobi matrices
T2 - A generalization of the Last–Simon approach
AU - Boutet de Monvel, Anne
AU - Janas, Jan
AU - Naboko, Serguei
PY - 2018/3/1
Y1 - 2018/3/1
N2 - We consider some unbounded Jacobi matrices J with zero main diagonal and off diagonal entries defined by two different rules and calculate their essential spectrum by extending Last and Simon's ideas from the bounded to the unbounded case. We show that the essential spectrum of J is the union of the spectra of three limit matrices Jz, Jzc, and Jcz. Finally, we give a description of each of these spectra.
AB - We consider some unbounded Jacobi matrices J with zero main diagonal and off diagonal entries defined by two different rules and calculate their essential spectrum by extending Last and Simon's ideas from the bounded to the unbounded case. We show that the essential spectrum of J is the union of the spectra of three limit matrices Jz, Jzc, and Jcz. Finally, we give a description of each of these spectra.
KW - Essential spectrum
KW - Jacobi matrix
KW - Limit matrix
KW - GAPS
KW - OPERATORS
UR - http://www.scopus.com/inward/record.url?scp=85044382475&partnerID=8YFLogxK
U2 - 10.1016/j.jat.2017.12.002
DO - 10.1016/j.jat.2017.12.002
M3 - Article
AN - SCOPUS:85044382475
VL - 227
SP - 51
EP - 69
JO - Journal of Approximation Theory
JF - Journal of Approximation Theory
SN - 0021-9045
ER -
ID: 36462016