Consider a simple symmetric random walk on the integer lattice Z. For each n, let V(n) denote a favorite site (or most visited site) of the random walk in the first n steps. A somewhat surprising theorem of Bass and Griffin [Z. Wahrsch. Verw. Gebiete 70 (1985) 417-436] says that V is almost surely transient, thus disproving a previous conjecture of Erdös and Révész [Mathematical Structures-Computational MathematicsMathematical Modeling 2 (1984) 152-157]. More precisely, Bass and Griffin proved that almost surely, lim inf n→ |V(n)/n| 1/2(logn) 0 if γ < 1, and is infinity if γ > 11 (eleven). The present paper studies the rate of escape of V(n). We show that almost surely, the "lim inf" expression in question is 0 if γ 1, and is infinity otherwise. The corresponding problem for Brownian motion is also studied.

Язык оригиналаанглийский
Страницы (с-по)129-152
Число страниц24
ЖурналAnnals of Probability
Том32
Номер выпуска1 A
СостояниеОпубликовано - 1 янв 2004

    Предметные области Scopus

  • Теория вероятности и статистика
  • Статистика, теория вероятности и теория неопределенности

ID: 37010783