Standard

The differentiation operator from model spaces to Bergman spaces and Peller type inequalities. / Baranov, Anton; Zarouf, Rachid.

в: Journal d'Analyse Mathematique, Том 137, № 1, 01.03.2019, стр. 189-209.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

Baranov, Anton ; Zarouf, Rachid. / The differentiation operator from model spaces to Bergman spaces and Peller type inequalities. в: Journal d'Analyse Mathematique. 2019 ; Том 137, № 1. стр. 189-209.

BibTeX

@article{e8891ab0911b416298dc4e8347623c99,
title = "The differentiation operator from model spaces to Bergman spaces and Peller type inequalities",
abstract = " Given an inner function Θ on the unit disc D, we study the boundedness of the differentiation operator which acts from the model subspace K Θ = (ΘH 2 ) ⊥ of the Hardy space H 2 , equipped with the BMOA-norm to some radial-weighted Bergman space. As an application, we generalize Peller{\textquoteright}s inequality for Besov norms of rational functions f of degree n ≥ 1 having no poles in the closed unit disc D¯. ",
author = "Anton Baranov and Rachid Zarouf",
note = "Baranov, A. & Zarouf, R. JAMA (2019) 137: 189. https://doi.org/10.1007/s11854-018-0069-0",
year = "2019",
month = mar,
day = "1",
doi = "10.1007/s11854-018-0069-0",
language = "English",
volume = "137",
pages = "189--209",
journal = "Journal d'Analyse Mathematique",
issn = "0021-7670",
publisher = "Springer Nature",
number = "1",

}

RIS

TY - JOUR

T1 - The differentiation operator from model spaces to Bergman spaces and Peller type inequalities

AU - Baranov, Anton

AU - Zarouf, Rachid

N1 - Baranov, A. & Zarouf, R. JAMA (2019) 137: 189. https://doi.org/10.1007/s11854-018-0069-0

PY - 2019/3/1

Y1 - 2019/3/1

N2 - Given an inner function Θ on the unit disc D, we study the boundedness of the differentiation operator which acts from the model subspace K Θ = (ΘH 2 ) ⊥ of the Hardy space H 2 , equipped with the BMOA-norm to some radial-weighted Bergman space. As an application, we generalize Peller’s inequality for Besov norms of rational functions f of degree n ≥ 1 having no poles in the closed unit disc D¯.

AB - Given an inner function Θ on the unit disc D, we study the boundedness of the differentiation operator which acts from the model subspace K Θ = (ΘH 2 ) ⊥ of the Hardy space H 2 , equipped with the BMOA-norm to some radial-weighted Bergman space. As an application, we generalize Peller’s inequality for Besov norms of rational functions f of degree n ≥ 1 having no poles in the closed unit disc D¯.

UR - http://www.scopus.com/inward/record.url?scp=85058437429&partnerID=8YFLogxK

UR - http://www.mendeley.com/research/differentiation-operator-model-spaces-bergman-spaces-peller-type-inequalities

U2 - 10.1007/s11854-018-0069-0

DO - 10.1007/s11854-018-0069-0

M3 - Article

AN - SCOPUS:85058437429

VL - 137

SP - 189

EP - 209

JO - Journal d'Analyse Mathematique

JF - Journal d'Analyse Mathematique

SN - 0021-7670

IS - 1

ER -

ID: 42796589