DOI

The paper is devoted to classification of MEDLINE abstracts into categories that correspond to types of medical interventions - types of patient treatments. This set of categories was extracted from Clinicaltrials.gov web site. Few classification algorithms were tested including Multinomial Naive Bayes, Multinomial Logistic Regression, and Linear SVM implementations from sklearn machine learning library. Document marking was based on the consideration of abstracts containing links to the Clinicaltrials.gov Web site. As the result of an automatical marking 3534 abstracts were marked for training and testing the set of algorithms metioned above. Best result of multinomial classification was achieved by Linear SVM with macro evaluation precision 70.06%, recall 55.62% and F-measure 62.01%, and micro evaluation precision 64.91%, recall 79.13% and F-measure 71.32%.

Язык оригиналаАнглийский
Название основной публикацииPROCEEDINGS OF THE 2015 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS
РедакторыM Ganzha, L Maciaszek, M Paprzycki
ИздательInstitute of Electrical and Electronics Engineers Inc.
Страницы323-328
Число страниц6
ISBN (печатное издание)9788360810651
DOI
СостояниеОпубликовано - 2015
СобытиеFederated Conference on Computer Science and Information Systems (FedCSIS) - Lodz, Польша
Продолжительность: 12 сен 201515 сен 2015

Серия публикаций

НазваниеACSIS-Annals of Computer Science and Information Systems
ИздательIEEE
Том5
ISSN (печатное издание)2300-5963

конференция

конференцияFederated Conference on Computer Science and Information Systems (FedCSIS)
Страна/TерриторияПольша
ГородLodz
Период12/09/1515/09/15

ID: 3983165