Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
The Crystal Chemistry of Boussingaultite, (NH4)2Mg(SO4)2·6H2O, and Its Derivatives in a Wide Temperature Range. / Zhitova, Elena S.; Sheveleva, Rezeda M.; Zolotarev, Andrey A.; Shendrik, Roman Yu.; Pankrushina, Elizaveta A.; Turovsky, Konstantin A.; Avdontceva, Margarita S.; Krzhizhanovskaya, Maria G.; Vlasenko, Natalia S.; Zolotarev, Anatoly A.; Rassomakhin, Mikhail A.; Krivovichev, Sergey V.
в: Minerals, Том 14, № 10, 1052, 20.10.2024.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - The Crystal Chemistry of Boussingaultite, (NH4)2Mg(SO4)2·6H2O, and Its Derivatives in a Wide Temperature Range
AU - Zhitova, Elena S.
AU - Sheveleva, Rezeda M.
AU - Zolotarev, Andrey A.
AU - Shendrik, Roman Yu.
AU - Pankrushina, Elizaveta A.
AU - Turovsky, Konstantin A.
AU - Avdontceva, Margarita S.
AU - Krzhizhanovskaya, Maria G.
AU - Vlasenko, Natalia S.
AU - Zolotarev, Anatoly A.
AU - Rassomakhin, Mikhail A.
AU - Krivovichev, Sergey V.
PY - 2024/10/20
Y1 - 2024/10/20
N2 - The crystal structure, thermal behavior, and vibrational spectra of the anthropogenic analogue of boussingaultite, (NH4)2Mg(SO4)2·6H2O, and its dehydrated counterpart efremovite, (NH4)2Mg2(SO4)3, were studied in detail. The sample from the Chelyabinsk burning coal dumps has the composition of (NH4)1.92(Mg1.02Mn0.01Fe0.01)∑1.04(SO4)2·6H2O and crystallizes in the space group P21/a, with a = 9.3183(4), b = 12.6070(4), c = 6.2054(3) Å, β = 107.115(5)°, V = 696.70(5) Å3 (at 20 °C), Z = 2. The thermal evolution steps are as follows: boussingaultite (NH4)2Mg(SO4)2·6H2O (25–90 °C) → X-ray amorphous phase (100–150 °C) → efremovite (NH4)2Mg2(SO4)3 (160–340 °C) → MgSO4 Cmcm + Pbnm (340–580 °C) → MgSO4 Pbnm (580–700 °C). Thermal expansion is anisotropic, with the coefficients (×106 °C−1) α11 = 52(2), α22 = 68(2), α33 = –89(3), and αv = 31(3) at T = –123 °C; and α11 = 53(2), α22 = 67(2), α33 = 15(1), and αv = 136(3) at T = 60 °C. The maximal thermal expansion is along the b-axis and is due to straightening of corrugated pseudolayers (within the ab plane) of Mg(H2O)6 octahedra and SO4 tetrahedra with NH4 groups in the interlayer space. Vibrational spectroscopy outlines the general trend of dehydration and deammonization as the difference in the temperature intervals of these transformation steps allows separation of O–H and N–H vibrations in the process of dehydration by infrared and Raman spectroscopy. The intermediate partially dehydrated modification of boussingaultite was detected by in situ Raman spectroscopy at 110 °C that may correspond to ammonium leonite.
AB - The crystal structure, thermal behavior, and vibrational spectra of the anthropogenic analogue of boussingaultite, (NH4)2Mg(SO4)2·6H2O, and its dehydrated counterpart efremovite, (NH4)2Mg2(SO4)3, were studied in detail. The sample from the Chelyabinsk burning coal dumps has the composition of (NH4)1.92(Mg1.02Mn0.01Fe0.01)∑1.04(SO4)2·6H2O and crystallizes in the space group P21/a, with a = 9.3183(4), b = 12.6070(4), c = 6.2054(3) Å, β = 107.115(5)°, V = 696.70(5) Å3 (at 20 °C), Z = 2. The thermal evolution steps are as follows: boussingaultite (NH4)2Mg(SO4)2·6H2O (25–90 °C) → X-ray amorphous phase (100–150 °C) → efremovite (NH4)2Mg2(SO4)3 (160–340 °C) → MgSO4 Cmcm + Pbnm (340–580 °C) → MgSO4 Pbnm (580–700 °C). Thermal expansion is anisotropic, with the coefficients (×106 °C−1) α11 = 52(2), α22 = 68(2), α33 = –89(3), and αv = 31(3) at T = –123 °C; and α11 = 53(2), α22 = 67(2), α33 = 15(1), and αv = 136(3) at T = 60 °C. The maximal thermal expansion is along the b-axis and is due to straightening of corrugated pseudolayers (within the ab plane) of Mg(H2O)6 octahedra and SO4 tetrahedra with NH4 groups in the interlayer space. Vibrational spectroscopy outlines the general trend of dehydration and deammonization as the difference in the temperature intervals of these transformation steps allows separation of O–H and N–H vibrations in the process of dehydration by infrared and Raman spectroscopy. The intermediate partially dehydrated modification of boussingaultite was detected by in situ Raman spectroscopy at 110 °C that may correspond to ammonium leonite.
KW - Raman
KW - Tutton’s salts
KW - boussingaultite
KW - crystal structure
KW - efremovite
KW - high temperature
KW - infrared
KW - low temperature
KW - picromerite
KW - vibrational spectroscopy
UR - https://www.mendeley.com/catalogue/ab99771e-b3ca-36e4-bd44-e8350c7e692b/
U2 - 10.3390/min14101052
DO - 10.3390/min14101052
M3 - Article
VL - 14
JO - Minerals
JF - Minerals
SN - 2075-163X
IS - 10
M1 - 1052
ER -
ID: 126385152