Standard

The best linear separation of two sets. / Чернэуцану, Е. К.; Малозёмов, В. Н.

в: Springer Optimization and Its Applications, Том 87, 2014, стр. 175-183.

Результаты исследований: Научные публикации в периодических изданияхстатья

Harvard

Чернэуцану, ЕК & Малозёмов, ВН 2014, 'The best linear separation of two sets', Springer Optimization and Its Applications, Том. 87, стр. 175-183. https://doi.org/10.1007/978-1-4614-8615-2_11

APA

Чернэуцану, Е. К., & Малозёмов, В. Н. (2014). The best linear separation of two sets. Springer Optimization and Its Applications, 87, 175-183. https://doi.org/10.1007/978-1-4614-8615-2_11

Vancouver

Чернэуцану ЕК, Малозёмов ВН. The best linear separation of two sets. Springer Optimization and Its Applications. 2014;87:175-183. https://doi.org/10.1007/978-1-4614-8615-2_11

Author

Чернэуцану, Е. К. ; Малозёмов, В. Н. / The best linear separation of two sets. в: Springer Optimization and Its Applications. 2014 ; Том 87. стр. 175-183.

BibTeX

@article{af0d3113c561446ba5a89237f7a05600,
title = "The best linear separation of two sets",
abstract = "Consider the problem of the best approximate separation of two finite sets in the linear case. This problem is reduced to the problem of nonsmooth optimization, analyzing which we use all power of the linear programming theory. Ideologically we follow Bennett and Mangassarian (Optim. Meth. Software 1, 23–34 1992).",
keywords = "The best linear separation, Linear programming",
author = "Чернэуцану, {Е. К.} and Малозёмов, {В. Н.}",
year = "2014",
doi = "10.1007/978-1-4614-8615-2_11",
language = "English",
volume = "87",
pages = "175--183",
journal = "Springer Optimization and Its Applications",
issn = "1931-6828",
publisher = "Springer Nature",

}

RIS

TY - JOUR

T1 - The best linear separation of two sets

AU - Чернэуцану, Е. К.

AU - Малозёмов, В. Н.

PY - 2014

Y1 - 2014

N2 - Consider the problem of the best approximate separation of two finite sets in the linear case. This problem is reduced to the problem of nonsmooth optimization, analyzing which we use all power of the linear programming theory. Ideologically we follow Bennett and Mangassarian (Optim. Meth. Software 1, 23–34 1992).

AB - Consider the problem of the best approximate separation of two finite sets in the linear case. This problem is reduced to the problem of nonsmooth optimization, analyzing which we use all power of the linear programming theory. Ideologically we follow Bennett and Mangassarian (Optim. Meth. Software 1, 23–34 1992).

KW - The best linear separation

KW - Linear programming

U2 - 10.1007/978-1-4614-8615-2_11

DO - 10.1007/978-1-4614-8615-2_11

M3 - Article

VL - 87

SP - 175

EP - 183

JO - Springer Optimization and Its Applications

JF - Springer Optimization and Its Applications

SN - 1931-6828

ER -

ID: 5627758