Standard

Temperature quenching of spontaneous emission in tunnel-injection nanostructures. / Talalaev, V.G.; Novikov, B.V.; Cirlin, G.E.; Leipner, H.S.

в: Semiconductors, № 11, 2015, стр. 1483-1492.

Результаты исследований: Научные публикации в периодических изданияхстатья

Harvard

Talalaev, VG, Novikov, BV, Cirlin, GE & Leipner, HS 2015, 'Temperature quenching of spontaneous emission in tunnel-injection nanostructures', Semiconductors, № 11, стр. 1483-1492. https://doi.org/10.1134/S1063782615110214

APA

Talalaev, V. G., Novikov, B. V., Cirlin, G. E., & Leipner, H. S. (2015). Temperature quenching of spontaneous emission in tunnel-injection nanostructures. Semiconductors, (11), 1483-1492. https://doi.org/10.1134/S1063782615110214

Vancouver

Author

Talalaev, V.G. ; Novikov, B.V. ; Cirlin, G.E. ; Leipner, H.S. / Temperature quenching of spontaneous emission in tunnel-injection nanostructures. в: Semiconductors. 2015 ; № 11. стр. 1483-1492.

BibTeX

@article{55511b6dbff34cecb3e8f44cce7c45d1,
title = "Temperature quenching of spontaneous emission in tunnel-injection nanostructures",
abstract = "{\textcopyright} 2015, Pleiades Publishing, Ltd.The spontaneous-emission spectra in the near-IR range (0.8–1.3 μm) from inverted tunnel-injection nanostructures are measured. These structures contain an InAs quantum-dot layer and an InGaAs quantum-well layer, separated by GaAs barrier spacer whose thickness varies in the range 3–9 nm. The temperature dependence of this emission in the range 5–295 K is investigated, both for optical excitation (photoluminescence) and for current injection in p–n junction (electroluminescence). At room temperature, current pumping proves more effective for inverted tunnel-injection nanostructures with a thin barrier (",
author = "V.G. Talalaev and B.V. Novikov and G.E. Cirlin and H.S. Leipner",
year = "2015",
doi = "10.1134/S1063782615110214",
language = "English",
pages = "1483--1492",
journal = "Semiconductors",
issn = "1063-7826",
publisher = "МАИК {"}Наука/Интерпериодика{"}",
number = "11",

}

RIS

TY - JOUR

T1 - Temperature quenching of spontaneous emission in tunnel-injection nanostructures

AU - Talalaev, V.G.

AU - Novikov, B.V.

AU - Cirlin, G.E.

AU - Leipner, H.S.

PY - 2015

Y1 - 2015

N2 - © 2015, Pleiades Publishing, Ltd.The spontaneous-emission spectra in the near-IR range (0.8–1.3 μm) from inverted tunnel-injection nanostructures are measured. These structures contain an InAs quantum-dot layer and an InGaAs quantum-well layer, separated by GaAs barrier spacer whose thickness varies in the range 3–9 nm. The temperature dependence of this emission in the range 5–295 K is investigated, both for optical excitation (photoluminescence) and for current injection in p–n junction (electroluminescence). At room temperature, current pumping proves more effective for inverted tunnel-injection nanostructures with a thin barrier (

AB - © 2015, Pleiades Publishing, Ltd.The spontaneous-emission spectra in the near-IR range (0.8–1.3 μm) from inverted tunnel-injection nanostructures are measured. These structures contain an InAs quantum-dot layer and an InGaAs quantum-well layer, separated by GaAs barrier spacer whose thickness varies in the range 3–9 nm. The temperature dependence of this emission in the range 5–295 K is investigated, both for optical excitation (photoluminescence) and for current injection in p–n junction (electroluminescence). At room temperature, current pumping proves more effective for inverted tunnel-injection nanostructures with a thin barrier (

U2 - 10.1134/S1063782615110214

DO - 10.1134/S1063782615110214

M3 - Article

SP - 1483

EP - 1492

JO - Semiconductors

JF - Semiconductors

SN - 1063-7826

IS - 11

ER -

ID: 4011780