A tandem arrangement of Differential Mobility Analyzer and Humidified Centrifugal Particle Mass Analyzer (DMA-HCPMA) was developed to measure the deliquescence and efflorescence thresholds and the water uptake of submicron particles over the relative humidity (RH) range from 10 % to 95 %. The hygroscopic growth curves obtained for Ammonium sulfate and sodium chloride test aerosols are consistent with thermodynamic model predictions and literature data. The DMA-HCPMA system was applied to measure the hygroscopic properties of urban aerosol particles, and the kappa mass interaction model (KIM) was used to characterize and parameterize the concentration-dependent water uptake observed in the 50–95 % RH range. For DMA-selected 160 nm dry particles (mass of 3.5 fg), we obtained a volume-based hygroscopicity parameter κv ≈ 0.2, which is consistent with literature data for freshly emitted urban aerosols.
Overall, our results show that the DMA-HCPMA system can be used to measure size-resolved mass growth factors o