Standard

Synthesis and properties of the NdSF compound, phase diagram of the NdF3–Nd2S3 system. / Grigorchenko, V.M.; Molokeev, M.S.; Oreshonkov, A.S.; Aleksandrovsky, A.S.; Kertman, A.V.; Abulkhaev, M.U.; Mereshchenko, A.S.; Yurev, I.O.; Shulaev, N.А.; Kamaev, D.N.; Elyshev, A.V.; Andreev, O.V.

в: Journal of Solid State Chemistry, Том 333, 124640, 01.05.2024.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Grigorchenko, VM, Molokeev, MS, Oreshonkov, AS, Aleksandrovsky, AS, Kertman, AV, Abulkhaev, MU, Mereshchenko, AS, Yurev, IO, Shulaev, NА, Kamaev, DN, Elyshev, AV & Andreev, OV 2024, 'Synthesis and properties of the NdSF compound, phase diagram of the NdF3–Nd2S3 system', Journal of Solid State Chemistry, Том. 333, 124640. https://doi.org/10.1016/j.jssc.2024.124640

APA

Grigorchenko, V. M., Molokeev, M. S., Oreshonkov, A. S., Aleksandrovsky, A. S., Kertman, A. V., Abulkhaev, M. U., Mereshchenko, A. S., Yurev, I. O., Shulaev, N. А., Kamaev, D. N., Elyshev, A. V., & Andreev, O. V. (2024). Synthesis and properties of the NdSF compound, phase diagram of the NdF3–Nd2S3 system. Journal of Solid State Chemistry, 333, [124640]. https://doi.org/10.1016/j.jssc.2024.124640

Vancouver

Grigorchenko VM, Molokeev MS, Oreshonkov AS, Aleksandrovsky AS, Kertman AV, Abulkhaev MU и пр. Synthesis and properties of the NdSF compound, phase diagram of the NdF3–Nd2S3 system. Journal of Solid State Chemistry. 2024 Май 1;333. 124640. https://doi.org/10.1016/j.jssc.2024.124640

Author

Grigorchenko, V.M. ; Molokeev, M.S. ; Oreshonkov, A.S. ; Aleksandrovsky, A.S. ; Kertman, A.V. ; Abulkhaev, M.U. ; Mereshchenko, A.S. ; Yurev, I.O. ; Shulaev, N.А. ; Kamaev, D.N. ; Elyshev, A.V. ; Andreev, O.V. / Synthesis and properties of the NdSF compound, phase diagram of the NdF3–Nd2S3 system. в: Journal of Solid State Chemistry. 2024 ; Том 333.

BibTeX

@article{299f593fc38c4e53a0f22ea89d0e9b54,
title = "Synthesis and properties of the NdSF compound, phase diagram of the NdF3–Nd2S3 system",
abstract = "The NdF3–Nd2S3 system attracts attention of researchers due to the possibility of using LnSF compounds (Ln = rare earth element) as possible new p- and n-type materials. The samples of this system were synthesized from NdF3 and Nd2S3. The NdSF compound belongs to the PbFCl structural type, P4/nmm space group, unit cell parameters: a = 3.9331(20) {\AA}, c = 6.9081(38) {\AA}. The experimentally determined direct and indirect NdSF bandgaps are equal to 2.68 eV and 2.24 eV. The electronic band structure was calculated via DFT simulation. The NdSF compound melts congruently at T = 1385 ± 10°С, ΔНm = 40.5 ± 10 kJ/mol, ΔS = 24.4 ± 10 J/mol. The NdSF microhardness is 455 ± 10 HV. Five phase transformations in the NdF3–Nd2S3 system were recorded by DSC; their balance equations were derived. The liquidus of the system calculated from the Redlich–Kister equation is fully consistent with the DSC data. {\textcopyright} 2024 Elsevier Inc.",
keywords = "Microhardness, Neodymium fluorosulfide, Optical band gap, Phase diagram, Chlorine compounds, Energy gap, Fluorine compounds, Lead compounds, Neodymium compounds, Phase diagrams, Rare earths, Compound phase, Electronic band structure, N-type materials, Neodymium fluorosulphide, P and n types, Property, Space Groups, Structural type, Synthesised, Unit cell parameters",
author = "V.M. Grigorchenko and M.S. Molokeev and A.S. Oreshonkov and A.S. Aleksandrovsky and A.V. Kertman and M.U. Abulkhaev and A.S. Mereshchenko and I.O. Yurev and N.А. Shulaev and D.N. Kamaev and A.V. Elyshev and O.V. Andreev",
note = "Export Date: 11 March 2024 CODEN: JSSCB Адрес для корреспонденции: Grigorchenko, V.M.; Tyumen State University, Volodarsky str. 6, Russian Federation; эл. почта: v.m.grigorchenko@utmn.ru Сведения о финансировании: Tyumen region Сведения о финансировании: Siberian Federal University, SibFU Текст о финансировании 1: The studies ab initio simulation of electron band structure, analysis of optical properties, XRD analysis was partially supported by ′ ′Priority-2030′′ program for the Siberian Federal University , and the state assignment of Kirensky Institute of Physics . Текст о финансировании 2: This research was funded by the Tyumen Oblast Government as part of the West-Siberian Interregional Science and Education Center{\textquoteright}s project No. 89-DON (3) Пристатейные ссылки: Arai, T., Iimura, S., Hosono, H., Doping induced polymorph and carrier polarity changes in LaSeF (2018) Chem. Mater., 30, pp. 597-601; Goubin, Rocquefelte, X., Pauwels, D., Tressaud, A., Demourgues, A., Jobic, S., Montardi, Y., The dielectric function of LnSF rare-earth fluorosulfides (Ln= La, Ce): experiment and theory (2004) J. Solid State Chem., 177, pp. 2833-2840; Abulkhaev, M.U., Molokeev, M.S., Oreshonkov, A.S., Aleksandrovsky, A.S., Kertman, A.V., Kamaev, D.N., Trofimova, O.V., Andreev, O.V., Properties of GdSF and phase diagram of the GdF3 - Gd2S3 system (2023) J. Solid State Chem., 322; Andreev, P., Mikhalkina, O., Andreev, O., Elyshev, A., Enthalpies of melting of LnSF compounds (Ln= La, Ce, Pr, Nd, Sm) (2015) Russ. J. Phys. Chem. A, 89, pp. 731-736; Buyer, C., Grossholz, H., Wolf, S., Zagorac, D., Zagorac, J., Sch{\"o}n, J.C., Schleid, T., Crystal-structure prediction and experimental investigation of the polymorphic lanthanum fluoride selenides LaFSe and La2F4Se (2022) Cryst. Growth Des., 22, pp. 7133-7142; Pauwels, D., Demourgues, A., Tressaud, A., Design and optical properties of rare earth-based mixed-anions (O,S,F) compounds (2002) MRS Online Proc. Libr. OPL., 755; Pauwels, D., Demourgues, A., Laronze, H., Gravereau, P., Guillen, F., Isnard, O., Tressaud, A., Structural features of new rare earth-based mixed anions (O, S, F) compounds: relationships between optical absorption and rare earth environment (2002) Solid State Sci., 4, pp. 1471-1479; Demourgues, А., Tressaud, A., Laronze, H., Gravereau, P., Macaudi{\`e}re, P., Preparation and structural properties of new series of mixed-anion compounds: rare earth fluorosulfides (2001) J. Fluor. Chem., 107, pp. 215-221; Reynders, P., Bertaux, S., Wichmann, J.-U., Pearlescent Pigments Based on Fluorides, Oxyfluorides, Fluorosulfides And/or Oxyfluorosulfides (2004), https://patents.google.com/patent/US20040219116A1/en, US20040219116A1 (Accessed 30 October 2023); Tomczak, J.M., Pourovskii, L.V., Vaugier, L., Georges, A., Biermann, S., Rare-earth vs. heavy metal pigments and their colors from first principles (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 904-907; Demourgues, A., Tressaud, A., Laronze, H., Macaudi{\`e}re, P., Rare earth fluorosulfides LnSF and Ln2AF4S2 as new colour pigments (2001) J. Alloys Compd., 323-324, pp. 223-230; Brixner, L., Hyatt, G., Precision lattice constants of the rare earth sulfofluorides of the type LnSF (1984) Mater. Res. Bull., 19 (6), pp. 745-750. , https://doi:10.1016/0025-5408(84)90031-x; Furuya, Y., Tanaka, H., Kawaguchi, N., Abe, N., Yokota, Y., Yanagida, T., Yoshikawa, A., Crystal Growth and Scintillation Properties of NdF3 Single Crystal (2009), IEEE Nucl. Sci. (NSS/MIC); Li, C., Yang, P., Xu, Z., Li, G., Yang, D., Peng, C., J. Lin, others, Fine structural and morphological control of rare earth fluorides REF3 (RE= La–Lu, Y) nano/microcrystals: microwave-assisted ionic liquid synthesis, magnetic and luminescent properties (2011) CrystEngComm, 13, pp. 1003-1013; Spedding, F.H., Henderson, D.C., High-temperature heat contents and related thermodynamic functions of seven trifluorides of the rare earths: Y, La, Pr, Nd, Gd, Ho, and Lu (1971) J. Chem. Phys., 54, pp. 2476-2483; Schleid, T., Lissner, F., Einkristalle von A-Nd2S3, U-Ho2S3, D-Er2S3 und E-Lu2S3, durch Oxidation reduzierter Chloride der Lanthanide mit Schwefel (1992) Z. Anorg. Allg. Chem., 615, pp. 19-26; Osseni, S., Andreev, P., Polkovnikov, A., Zakharov, B., Aleksandrovsky, A., Abulkhaev, M., Volkova, S., Nesterova, N., others, Properties of oxysulfide phases and phase diagram of the Nd2S3–Nd2O3 system (2022) J. Solid State Chem., 314; Shtykova, M., Molokeev, M., Zakharov, B., Selezneva, N., Aleksandrovsky, A., Bubnova, R., Kamaev, D., others, Structure and properties of phases in the Cu2-ХSe-Sb2Se3 system. The Cu2-XSe-Sb2Se3 phase diagram (2022) J. Alloys Compd., 906; Razumkova, I.A., Azarapin, N.O., The nature of the interaction of RE(NO3)3 (yttrium subgroup) with HF or NH4F (2021) Z. Anorg. Allg. Chem., 647, pp. 20-21; Razumkova, I.A., Denisenko, Y.G., Boyko, A.N., Ikonnikov, D.A., Aleksandrovsky, A.S., Azarapin, N.O., Andreev, O.V., Synthesis and upconversion luminescence in LaF3: Yb3+, Ho3+, GdF3: Yb3+, Tm3+ and YF3: Yb3+, Er3+ obtained from sulfide precursors (2019) Z. Anorg. Allg. Chem., 645, pp. 1393-1401; Razumkova, I.A., Boiko, A.N., Andreev, O.V., Basova, S.A., Synthesis of [(H3O)Tm3F10] nH2O, ErF3, and TmF3 powders and their physicochemical properties (2017) Russ. J. Inorg. Chem, 62 (4), pp. 418-422; Andreev, P.O., Polkovnikov, A.A., Denisenko, Y.G., Andreev, O.V., Burkhanova, T.M., Bobylevb, A.N., Pimneva, L.A., Temperatures and enthalpies of melting of Ln2S3 (Ln= Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) compounds (2018) J. Therm. Anal. Calorim., 131, pp. 1545-1551; Ohta, M., Hirai, S., Kato, H., Sokolov, V.V., Bakovets, V.V., Thermal decomposition of NH4SCN for preparation of Ln2S3 (Ln=La and Gd) by sulfurization (2009) Mater. Trans., 50 (7), pp. 1885-1889; Mauricot, R., Gressier, P., Evain, M., Brec, R., Comparative study of some rare earth sulfides: doped γ-[A] M2S3 (M = La, Ce and Nd, A = Na, K and Ca) and undoped γ-M2S3 (M = La, Ce and Nd) (1995) J. Alloys Compd., 223 (1), pp. 130-138; Vasil'eva, I., Malovitsky, Y., Kosyakov, V., Phase equilibrium and growth of homogeneous crystals in the γLa2S3 - γNd2S3 system (1983) Mater. Res. Bull., 18, pp. 1121-1127; Degen, Sadki, M., Bron, E., K{\"o}nig, U., N{\'e}nert, G., The HighScore suite (2014) Powder Diffr., 29, pp. S13-S18; Gates-Rector, S., Blanton, T., The Powder Diffraction File: a quality materials characterization database (2019) Powder Diffr., 34, pp. 352-360; Merkys, A., Vaitkus, A., Grybauskas, A., Konovalovas, A., Quir{\'o}s, M., Gra{\v z}ulis, S., Graph isomorphism-based algorithm for cross-checking chemical and crystallographic descriptions (2023) J. Cheminf., 15, p. 25; Vaitkus, A., Merkys, A., Gra{\v z}ulis, S., Validation of the crystallography open database using the crystallographic information framework (2021) J. Appl. Crystallogr., 54, pp. 661-672; Quir{\'o}s, M., Gra{\v z}ulis, S., Girdzijauskaitė, S., Merkys, A., Vaitkus, A., Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database (2018) J. Cheminf., 10, p. 23; Merkys, A., Vaitkus, A., Butkus, J., Okuli{\v c}-Kazarinas, M., Kairys, V., Gra{\v z}ulis, S., COD::CIF::Parser : an error-correcting CIF parser for the Perl language (2016) J. Appl. Crystallogr., 49, pp. 292-301; Gra{\v z}ulis, S., Merkys, A., Vaitkus, A., Okuli{\v c}-Kazarinas, M., Computing stoichiometric molecular composition from crystal structures (2015) J. Appl. Crystallogr., 48, pp. 85-91; Gra{\v z}ulis, S., Da{\v s}kevi{\v c}, A., Merkys, A., Chateigner, D., Lutterotti, L., Quir{\'o}s, M., Serebryanaya, N.R., Le Bail, A., Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration (2012) Nucleic Acids Res., 40, pp. D420-D427; Gra{\v z}ulis, S., Chateigner, D., Downs, R.T., Yokochi, A.F.T., Quir{\'o}s, M., Lutterotti, L., Manakova, E., Le Bail, A., Crystallography Open Database – an open-access collection of crystal structures (2009) J. Appl. Crystallogr., 42, pp. 726-729; Downs, R.T., Hall-Wallace, M., The American Mineralogist crystal structure database (2003) Am. Mineral., 88, pp. 247-250. , https://pubs.geoscienceworld.org/msa/ammin/article-abstract/88/1/247/43886; Denisenko, Y.G., Atuchin, V.V., Molokeev, M.S., Sedykh, A.E., Khritokhin, N.A., Aleksandrovsky, A.S., Oreshonkov, A.S., Pugachev, A.M., Exploration of the crystal structure and thermal and spectroscopic properties of monoclinic praseodymium sulfate Pr2(SO4)3 (2022) Molecules, 27, p. 3966; Sal'nikova, E.I., Denisenko, Y., Kolesnikov, I.E., L{\"a}hderanta, E., Andreev, O.V., Azarapin, N.O., Basova, S.A., Oreshonkov, A.S., Synthesis and luminescent properties of (RE0.95Ln0.05)2O2S (RE = La, Y; Ln = Ho, Tm) (2020) J. Solid State Chem., 293; Andreev, L.P., Y2S3–Y2O3 phase diagram and the enthalpies of phase transitions (2018) J. Solid State Chem., 263, pp. 24-29; Shtykova, M.A., Vorob'eva, V.P., Fedorov, P.P., Molokeev, M., Aleksandrovsky, A., Elyshev, A., Palamarchuk, I., Habibullayev, N., others, Features of phase equilibria and properties of phases in the Sb-Sm-Se system (2022) J. Solid State Chem.; Yurev, I.O., Aleksandrovsky, A.S., Kamaev, D.N., Polkovnikov, A.A., Grigorchenko, V.M., Yarovenko, A.A., Zelenaya, A.E., Andreev, O.V., The Sm2S3-X-SmS-Sm2O2S refractory system: thermal analysis, phase diagram, and properties of the phases (2024) J. Therm. Anal. Calorim.; Landi, S., Segundo, I.R., Freitas, E., Use and misuse of the Kubelka–Munk function to obtain the band gap energy from diffuse reflectance measurements (2022) Solid State Commun., 341; Rampino, S., Pattini, F., Bronzoni, M., CuSbSe2 thin film solar cells with ∼4% conversion efficiency grown by low-temperature pulsed electron deposition (2018) Sol. Energy Mater. Sol. Cells, 185, pp. 86-96; Habibullayev, N.N., Naumov, N.G., Lavrov, A.N., Kuratieva, N.V., Aleksandrovsky, A.S., Oreshonkov, A.S., Molokeev, M.S., Denisenko, Y.G., Magnetic, optical, and thermic properties of SrLnCuSe3 (Ln = Dy, Ho, Er, Tm) compounds (2023) Magnetochemistry, 9 (194); Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I.J., Refson, K., Payne, M.C., First principles methods using CASTEP (2005) Z. Kristallogr., 220, pp. 567-570; Cococcioni, M., de Gironcoli, S., Linear response approach to the calculation of the effective interaction parameters in the LDA+U method (2005) Phys. Rev. B, 71; Bart{\'o}k, A.P., Yates, J.R., Regularized SCAN functional (2019) J. Chem. Phys., 150; Golovnev, N., Molokeev, M., Crystal structure of catena-(2-thiobarbiturato) dithallium (I) (2014) J. Struct. Chem., 55, pp. 125-129; Galler, A., Boust, J., Demourgues, A., Biermann, S., Pourovskii, L.V., Correlated electronic structure and optical response of rare-earth based semiconductors (2021) Phys. Rev. B, 103, p. L241105",
year = "2024",
month = may,
day = "1",
doi = "10.1016/j.jssc.2024.124640",
language = "Английский",
volume = "333",
journal = "Journal of Solid State Chemistry",
issn = "0022-4596",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Synthesis and properties of the NdSF compound, phase diagram of the NdF3–Nd2S3 system

AU - Grigorchenko, V.M.

AU - Molokeev, M.S.

AU - Oreshonkov, A.S.

AU - Aleksandrovsky, A.S.

AU - Kertman, A.V.

AU - Abulkhaev, M.U.

AU - Mereshchenko, A.S.

AU - Yurev, I.O.

AU - Shulaev, N.А.

AU - Kamaev, D.N.

AU - Elyshev, A.V.

AU - Andreev, O.V.

N1 - Export Date: 11 March 2024 CODEN: JSSCB Адрес для корреспонденции: Grigorchenko, V.M.; Tyumen State University, Volodarsky str. 6, Russian Federation; эл. почта: v.m.grigorchenko@utmn.ru Сведения о финансировании: Tyumen region Сведения о финансировании: Siberian Federal University, SibFU Текст о финансировании 1: The studies ab initio simulation of electron band structure, analysis of optical properties, XRD analysis was partially supported by ′ ′Priority-2030′′ program for the Siberian Federal University , and the state assignment of Kirensky Institute of Physics . Текст о финансировании 2: This research was funded by the Tyumen Oblast Government as part of the West-Siberian Interregional Science and Education Center’s project No. 89-DON (3) Пристатейные ссылки: Arai, T., Iimura, S., Hosono, H., Doping induced polymorph and carrier polarity changes in LaSeF (2018) Chem. Mater., 30, pp. 597-601; Goubin, Rocquefelte, X., Pauwels, D., Tressaud, A., Demourgues, A., Jobic, S., Montardi, Y., The dielectric function of LnSF rare-earth fluorosulfides (Ln= La, Ce): experiment and theory (2004) J. Solid State Chem., 177, pp. 2833-2840; Abulkhaev, M.U., Molokeev, M.S., Oreshonkov, A.S., Aleksandrovsky, A.S., Kertman, A.V., Kamaev, D.N., Trofimova, O.V., Andreev, O.V., Properties of GdSF and phase diagram of the GdF3 - Gd2S3 system (2023) J. Solid State Chem., 322; Andreev, P., Mikhalkina, O., Andreev, O., Elyshev, A., Enthalpies of melting of LnSF compounds (Ln= La, Ce, Pr, Nd, Sm) (2015) Russ. J. Phys. Chem. A, 89, pp. 731-736; Buyer, C., Grossholz, H., Wolf, S., Zagorac, D., Zagorac, J., Schön, J.C., Schleid, T., Crystal-structure prediction and experimental investigation of the polymorphic lanthanum fluoride selenides LaFSe and La2F4Se (2022) Cryst. Growth Des., 22, pp. 7133-7142; Pauwels, D., Demourgues, A., Tressaud, A., Design and optical properties of rare earth-based mixed-anions (O,S,F) compounds (2002) MRS Online Proc. Libr. OPL., 755; Pauwels, D., Demourgues, A., Laronze, H., Gravereau, P., Guillen, F., Isnard, O., Tressaud, A., Structural features of new rare earth-based mixed anions (O, S, F) compounds: relationships between optical absorption and rare earth environment (2002) Solid State Sci., 4, pp. 1471-1479; Demourgues, А., Tressaud, A., Laronze, H., Gravereau, P., Macaudière, P., Preparation and structural properties of new series of mixed-anion compounds: rare earth fluorosulfides (2001) J. Fluor. Chem., 107, pp. 215-221; Reynders, P., Bertaux, S., Wichmann, J.-U., Pearlescent Pigments Based on Fluorides, Oxyfluorides, Fluorosulfides And/or Oxyfluorosulfides (2004), https://patents.google.com/patent/US20040219116A1/en, US20040219116A1 (Accessed 30 October 2023); Tomczak, J.M., Pourovskii, L.V., Vaugier, L., Georges, A., Biermann, S., Rare-earth vs. heavy metal pigments and their colors from first principles (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 904-907; Demourgues, A., Tressaud, A., Laronze, H., Macaudière, P., Rare earth fluorosulfides LnSF and Ln2AF4S2 as new colour pigments (2001) J. Alloys Compd., 323-324, pp. 223-230; Brixner, L., Hyatt, G., Precision lattice constants of the rare earth sulfofluorides of the type LnSF (1984) Mater. Res. Bull., 19 (6), pp. 745-750. , https://doi:10.1016/0025-5408(84)90031-x; Furuya, Y., Tanaka, H., Kawaguchi, N., Abe, N., Yokota, Y., Yanagida, T., Yoshikawa, A., Crystal Growth and Scintillation Properties of NdF3 Single Crystal (2009), IEEE Nucl. Sci. (NSS/MIC); Li, C., Yang, P., Xu, Z., Li, G., Yang, D., Peng, C., J. Lin, others, Fine structural and morphological control of rare earth fluorides REF3 (RE= La–Lu, Y) nano/microcrystals: microwave-assisted ionic liquid synthesis, magnetic and luminescent properties (2011) CrystEngComm, 13, pp. 1003-1013; Spedding, F.H., Henderson, D.C., High-temperature heat contents and related thermodynamic functions of seven trifluorides of the rare earths: Y, La, Pr, Nd, Gd, Ho, and Lu (1971) J. Chem. Phys., 54, pp. 2476-2483; Schleid, T., Lissner, F., Einkristalle von A-Nd2S3, U-Ho2S3, D-Er2S3 und E-Lu2S3, durch Oxidation reduzierter Chloride der Lanthanide mit Schwefel (1992) Z. Anorg. Allg. Chem., 615, pp. 19-26; Osseni, S., Andreev, P., Polkovnikov, A., Zakharov, B., Aleksandrovsky, A., Abulkhaev, M., Volkova, S., Nesterova, N., others, Properties of oxysulfide phases and phase diagram of the Nd2S3–Nd2O3 system (2022) J. Solid State Chem., 314; Shtykova, M., Molokeev, M., Zakharov, B., Selezneva, N., Aleksandrovsky, A., Bubnova, R., Kamaev, D., others, Structure and properties of phases in the Cu2-ХSe-Sb2Se3 system. The Cu2-XSe-Sb2Se3 phase diagram (2022) J. Alloys Compd., 906; Razumkova, I.A., Azarapin, N.O., The nature of the interaction of RE(NO3)3 (yttrium subgroup) with HF or NH4F (2021) Z. Anorg. Allg. Chem., 647, pp. 20-21; Razumkova, I.A., Denisenko, Y.G., Boyko, A.N., Ikonnikov, D.A., Aleksandrovsky, A.S., Azarapin, N.O., Andreev, O.V., Synthesis and upconversion luminescence in LaF3: Yb3+, Ho3+, GdF3: Yb3+, Tm3+ and YF3: Yb3+, Er3+ obtained from sulfide precursors (2019) Z. Anorg. Allg. Chem., 645, pp. 1393-1401; Razumkova, I.A., Boiko, A.N., Andreev, O.V., Basova, S.A., Synthesis of [(H3O)Tm3F10] nH2O, ErF3, and TmF3 powders and their physicochemical properties (2017) Russ. J. Inorg. Chem, 62 (4), pp. 418-422; Andreev, P.O., Polkovnikov, A.A., Denisenko, Y.G., Andreev, O.V., Burkhanova, T.M., Bobylevb, A.N., Pimneva, L.A., Temperatures and enthalpies of melting of Ln2S3 (Ln= Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) compounds (2018) J. Therm. Anal. Calorim., 131, pp. 1545-1551; Ohta, M., Hirai, S., Kato, H., Sokolov, V.V., Bakovets, V.V., Thermal decomposition of NH4SCN for preparation of Ln2S3 (Ln=La and Gd) by sulfurization (2009) Mater. Trans., 50 (7), pp. 1885-1889; Mauricot, R., Gressier, P., Evain, M., Brec, R., Comparative study of some rare earth sulfides: doped γ-[A] M2S3 (M = La, Ce and Nd, A = Na, K and Ca) and undoped γ-M2S3 (M = La, Ce and Nd) (1995) J. Alloys Compd., 223 (1), pp. 130-138; Vasil'eva, I., Malovitsky, Y., Kosyakov, V., Phase equilibrium and growth of homogeneous crystals in the γLa2S3 - γNd2S3 system (1983) Mater. Res. Bull., 18, pp. 1121-1127; Degen, Sadki, M., Bron, E., König, U., Nénert, G., The HighScore suite (2014) Powder Diffr., 29, pp. S13-S18; Gates-Rector, S., Blanton, T., The Powder Diffraction File: a quality materials characterization database (2019) Powder Diffr., 34, pp. 352-360; Merkys, A., Vaitkus, A., Grybauskas, A., Konovalovas, A., Quirós, M., Gražulis, S., Graph isomorphism-based algorithm for cross-checking chemical and crystallographic descriptions (2023) J. Cheminf., 15, p. 25; Vaitkus, A., Merkys, A., Gražulis, S., Validation of the crystallography open database using the crystallographic information framework (2021) J. Appl. Crystallogr., 54, pp. 661-672; Quirós, M., Gražulis, S., Girdzijauskaitė, S., Merkys, A., Vaitkus, A., Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database (2018) J. Cheminf., 10, p. 23; Merkys, A., Vaitkus, A., Butkus, J., Okulič-Kazarinas, M., Kairys, V., Gražulis, S., COD::CIF::Parser : an error-correcting CIF parser for the Perl language (2016) J. Appl. Crystallogr., 49, pp. 292-301; Gražulis, S., Merkys, A., Vaitkus, A., Okulič-Kazarinas, M., Computing stoichiometric molecular composition from crystal structures (2015) J. Appl. Crystallogr., 48, pp. 85-91; Gražulis, S., Daškevič, A., Merkys, A., Chateigner, D., Lutterotti, L., Quirós, M., Serebryanaya, N.R., Le Bail, A., Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration (2012) Nucleic Acids Res., 40, pp. D420-D427; Gražulis, S., Chateigner, D., Downs, R.T., Yokochi, A.F.T., Quirós, M., Lutterotti, L., Manakova, E., Le Bail, A., Crystallography Open Database – an open-access collection of crystal structures (2009) J. Appl. Crystallogr., 42, pp. 726-729; Downs, R.T., Hall-Wallace, M., The American Mineralogist crystal structure database (2003) Am. Mineral., 88, pp. 247-250. , https://pubs.geoscienceworld.org/msa/ammin/article-abstract/88/1/247/43886; Denisenko, Y.G., Atuchin, V.V., Molokeev, M.S., Sedykh, A.E., Khritokhin, N.A., Aleksandrovsky, A.S., Oreshonkov, A.S., Pugachev, A.M., Exploration of the crystal structure and thermal and spectroscopic properties of monoclinic praseodymium sulfate Pr2(SO4)3 (2022) Molecules, 27, p. 3966; Sal'nikova, E.I., Denisenko, Y., Kolesnikov, I.E., Lähderanta, E., Andreev, O.V., Azarapin, N.O., Basova, S.A., Oreshonkov, A.S., Synthesis and luminescent properties of (RE0.95Ln0.05)2O2S (RE = La, Y; Ln = Ho, Tm) (2020) J. Solid State Chem., 293; Andreev, L.P., Y2S3–Y2O3 phase diagram and the enthalpies of phase transitions (2018) J. Solid State Chem., 263, pp. 24-29; Shtykova, M.A., Vorob'eva, V.P., Fedorov, P.P., Molokeev, M., Aleksandrovsky, A., Elyshev, A., Palamarchuk, I., Habibullayev, N., others, Features of phase equilibria and properties of phases in the Sb-Sm-Se system (2022) J. Solid State Chem.; Yurev, I.O., Aleksandrovsky, A.S., Kamaev, D.N., Polkovnikov, A.A., Grigorchenko, V.M., Yarovenko, A.A., Zelenaya, A.E., Andreev, O.V., The Sm2S3-X-SmS-Sm2O2S refractory system: thermal analysis, phase diagram, and properties of the phases (2024) J. Therm. Anal. Calorim.; Landi, S., Segundo, I.R., Freitas, E., Use and misuse of the Kubelka–Munk function to obtain the band gap energy from diffuse reflectance measurements (2022) Solid State Commun., 341; Rampino, S., Pattini, F., Bronzoni, M., CuSbSe2 thin film solar cells with ∼4% conversion efficiency grown by low-temperature pulsed electron deposition (2018) Sol. Energy Mater. Sol. Cells, 185, pp. 86-96; Habibullayev, N.N., Naumov, N.G., Lavrov, A.N., Kuratieva, N.V., Aleksandrovsky, A.S., Oreshonkov, A.S., Molokeev, M.S., Denisenko, Y.G., Magnetic, optical, and thermic properties of SrLnCuSe3 (Ln = Dy, Ho, Er, Tm) compounds (2023) Magnetochemistry, 9 (194); Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I.J., Refson, K., Payne, M.C., First principles methods using CASTEP (2005) Z. Kristallogr., 220, pp. 567-570; Cococcioni, M., de Gironcoli, S., Linear response approach to the calculation of the effective interaction parameters in the LDA+U method (2005) Phys. Rev. B, 71; Bartók, A.P., Yates, J.R., Regularized SCAN functional (2019) J. Chem. Phys., 150; Golovnev, N., Molokeev, M., Crystal structure of catena-(2-thiobarbiturato) dithallium (I) (2014) J. Struct. Chem., 55, pp. 125-129; Galler, A., Boust, J., Demourgues, A., Biermann, S., Pourovskii, L.V., Correlated electronic structure and optical response of rare-earth based semiconductors (2021) Phys. Rev. B, 103, p. L241105

PY - 2024/5/1

Y1 - 2024/5/1

N2 - The NdF3–Nd2S3 system attracts attention of researchers due to the possibility of using LnSF compounds (Ln = rare earth element) as possible new p- and n-type materials. The samples of this system were synthesized from NdF3 and Nd2S3. The NdSF compound belongs to the PbFCl structural type, P4/nmm space group, unit cell parameters: a = 3.9331(20) Å, c = 6.9081(38) Å. The experimentally determined direct and indirect NdSF bandgaps are equal to 2.68 eV and 2.24 eV. The electronic band structure was calculated via DFT simulation. The NdSF compound melts congruently at T = 1385 ± 10°С, ΔНm = 40.5 ± 10 kJ/mol, ΔS = 24.4 ± 10 J/mol. The NdSF microhardness is 455 ± 10 HV. Five phase transformations in the NdF3–Nd2S3 system were recorded by DSC; their balance equations were derived. The liquidus of the system calculated from the Redlich–Kister equation is fully consistent with the DSC data. © 2024 Elsevier Inc.

AB - The NdF3–Nd2S3 system attracts attention of researchers due to the possibility of using LnSF compounds (Ln = rare earth element) as possible new p- and n-type materials. The samples of this system were synthesized from NdF3 and Nd2S3. The NdSF compound belongs to the PbFCl structural type, P4/nmm space group, unit cell parameters: a = 3.9331(20) Å, c = 6.9081(38) Å. The experimentally determined direct and indirect NdSF bandgaps are equal to 2.68 eV and 2.24 eV. The electronic band structure was calculated via DFT simulation. The NdSF compound melts congruently at T = 1385 ± 10°С, ΔНm = 40.5 ± 10 kJ/mol, ΔS = 24.4 ± 10 J/mol. The NdSF microhardness is 455 ± 10 HV. Five phase transformations in the NdF3–Nd2S3 system were recorded by DSC; their balance equations were derived. The liquidus of the system calculated from the Redlich–Kister equation is fully consistent with the DSC data. © 2024 Elsevier Inc.

KW - Microhardness

KW - Neodymium fluorosulfide

KW - Optical band gap

KW - Phase diagram

KW - Chlorine compounds

KW - Energy gap

KW - Fluorine compounds

KW - Lead compounds

KW - Neodymium compounds

KW - Phase diagrams

KW - Rare earths

KW - Compound phase

KW - Electronic band structure

KW - N-type materials

KW - Neodymium fluorosulphide

KW - P and n types

KW - Property

KW - Space Groups

KW - Structural type

KW - Synthesised

KW - Unit cell parameters

UR - https://www.mendeley.com/catalogue/72394ed5-d92e-36e4-91b9-ba7c48d34ec3/

U2 - 10.1016/j.jssc.2024.124640

DO - 10.1016/j.jssc.2024.124640

M3 - статья

VL - 333

JO - Journal of Solid State Chemistry

JF - Journal of Solid State Chemistry

SN - 0022-4596

M1 - 124640

ER -

ID: 117486611