DOI

Natural polymers as battery components have a number of advantages, including availability, biodegradability, unleakage, stable form, superior process, electrochemical stability, and low cost. In other sides, conductive polymers can improve the electrochemical properties of the battery, such as charge/discharge rates, cycling stability, and overall energy storage capacity. Therefore, the combination of these two materials can provide acceptable features. In this study, polymer electrolytes based on cellulose have been synthesized by solution casting method to prepare a thin polymer film. Then, polypyrrole (PPy) was blended with cellulose in different weight ratios. To prevent electrical conductivity of blends, PPy was used <10 wt%. The electrochemical properties of prepared electrolytes have been investigated by different methods. The results showed that ionic conductivity was increased by addition of PPy to cellulose due to the creation of pores and also due to the high dielectric constant of conductive polymers. All synthesized electrolytes had suitable ionic conductivity (in the range of 10−3 S cm−1), significant charge capacity, stable cyclic performance, excellent electrochemical stability (above 4.8 V), and high cation transfer number (between 0.38 and 0.66 for pure cellulose and the sample containing 10 wt% PPy).
Переведенное названиеСинтез и оценка композитов целлюлозы/полипиррола в качестве полимерных электролитов для применения в литий-ионных аккумуляторах
Язык оригиналаанглийский
Номер статьи129861
Число страниц12
ЖурналInternational Journal of Biological Macromolecules
Том262
Номер выпускаPart 1
DOI
СостояниеОпубликовано - 1 мар 2024

    Области исследований

  • Polymer electrolyte, Lithium-ion battery, Cellulose, Polypyrrole

ID: 127697401