Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Surface waves in a channel with thin tunnels and wells at the bottom : Non-reflecting underwater topography. / Chesnel, Lucas; Nazarov, Sergei A.; Taskinen, Jari.
в: Asymptotic Analysis, Том 118, № 1-2, 01.01.2020, стр. 81-122.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Surface waves in a channel with thin tunnels and wells at the bottom
T2 - Non-reflecting underwater topography
AU - Chesnel, Lucas
AU - Nazarov, Sergei A.
AU - Taskinen, Jari
PY - 2020/1/1
Y1 - 2020/1/1
N2 - We consider the propagation of surface water waves in a straight planar channel perturbed at the bottom by several thin curved tunnels and wells. We propose a method to construct non reflecting underwater topographies of this type at an arbitrary prescribed wave number. To proceed, we compute asymptotic expansions of the diffraction solutions with respect to the small parameter of the geometry taking into account the existence of boundary layer phenomena. We establish error estimates to validate the expansions using advances techniques of weighted spaces with detached asymptotics. In the process, we show the absence of trapped surface waves for perturbations small enough. This analysis furnishes asymptotic formulas for the scattering matrix and we use them to determine underwater topographies which are non-reflecting. Theoretical and numerical examples are given.
AB - We consider the propagation of surface water waves in a straight planar channel perturbed at the bottom by several thin curved tunnels and wells. We propose a method to construct non reflecting underwater topographies of this type at an arbitrary prescribed wave number. To proceed, we compute asymptotic expansions of the diffraction solutions with respect to the small parameter of the geometry taking into account the existence of boundary layer phenomena. We establish error estimates to validate the expansions using advances techniques of weighted spaces with detached asymptotics. In the process, we show the absence of trapped surface waves for perturbations small enough. This analysis furnishes asymptotic formulas for the scattering matrix and we use them to determine underwater topographies which are non-reflecting. Theoretical and numerical examples are given.
KW - asymptotic analysis
KW - invisibility
KW - Linear water-wave problem
KW - scattering matrix
KW - weighted spaces with detached asymptotics
UR - http://www.scopus.com/inward/record.url?scp=85087825410&partnerID=8YFLogxK
U2 - 10.3233/ASY-191556
DO - 10.3233/ASY-191556
M3 - Article
AN - SCOPUS:85087825410
VL - 118
SP - 81
EP - 122
JO - Asymptotic Analysis
JF - Asymptotic Analysis
SN - 0921-7134
IS - 1-2
ER -
ID: 60873187