A system where a Bose-Einstein condensate of exciton-polaritons coexists with a Fermi gas of electrons has been recently proposed as promising for realization of room-temperature superconductivity. In order to find the optimum conditions for exciton and exciton-polariton
mediated superconductivity, we studied the attractive mechanism between electrons of a Cooper pair mediated by the exciton and exciton-polariton condensate. We also analyzed the gap equation that follows. We specifically examined microcavities with embedded n-doped quantum wells as well as coupled quantum wells hosting a condensate of spatially indirect excitons, put in contact with a two-dimensional electron gas. An effective potential of interaction between electrons was derived as a function of their exchanged energy ℏω, taking into account the retardation effect that allows two negatively charged carriers to feel an attraction. In the polariton case, the interaction is weakly attractive at long times, followed by a succession of strongly