Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Subgroups of the general symplectic group containing the group of diagonal matrices. / Vavilov, N. A.; Dybkova, E. V.
в: Journal of Soviet Mathematics, Том 24, № 4, 02.1984, стр. 406-416.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Subgroups of the general symplectic group containing the group of diagonal matrices
AU - Vavilov, N. A.
AU - Dybkova, E. V.
N1 - Copyright: Copyright 2007 Elsevier B.V., All rights reserved.
PY - 1984/2
Y1 - 1984/2
N2 - There are described the subgroups of the general symplectic group Γ=GSp(2n, R) over a commutative semilocal ring R, containing the group of symplectic diagonal matrices. For each such subgroup P there is uniquely defined a symplectic D-net a such that Γ(σ)≤p≤NΓ(σ), where Γ (σ) is the net subgroup in Γ corresponding to σ (cf. RZhMat, 1977, 5A288), and NΓ(σ) is its normalizer. The quotient group NΓ × (σ)/Γ(σ) is calculated. There are also considered subgroups in Sp(2n, R). Analogous results for subgroups of the general linear group were obtained earlier in RZhMat, 1978, 9A237.
AB - There are described the subgroups of the general symplectic group Γ=GSp(2n, R) over a commutative semilocal ring R, containing the group of symplectic diagonal matrices. For each such subgroup P there is uniquely defined a symplectic D-net a such that Γ(σ)≤p≤NΓ(σ), where Γ (σ) is the net subgroup in Γ corresponding to σ (cf. RZhMat, 1977, 5A288), and NΓ(σ) is its normalizer. The quotient group NΓ × (σ)/Γ(σ) is calculated. There are also considered subgroups in Sp(2n, R). Analogous results for subgroups of the general linear group were obtained earlier in RZhMat, 1978, 9A237.
UR - http://www.scopus.com/inward/record.url?scp=0010894324&partnerID=8YFLogxK
U2 - 10.1007/BF01094368
DO - 10.1007/BF01094368
M3 - Article
AN - SCOPUS:0010894324
VL - 24
SP - 406
EP - 416
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 4
ER -
ID: 76483735