Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Subgroups of the full linear group over a Dedekind ring. / Borevich, Z. I.; Vavilov, N. A.; Narkiewicz, W.
в: Journal of Soviet Mathematics, Том 19, № 1, 05.1982, стр. 982-987.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Subgroups of the full linear group over a Dedekind ring
AU - Borevich, Z. I.
AU - Vavilov, N. A.
AU - Narkiewicz, W.
N1 - Copyright: Copyright 2007 Elsevier B.V., All rights reserved.
PY - 1982/5
Y1 - 1982/5
N2 - We study the subgroups of the full linear group GL(n, R) over a Dedekind ring R that contain the group of quasidiagonal matrices of fixed type with diagonal blocks of at least third order, each of which is generated by elementary matrices. For any such subgroup H there exists a unique D-net σ of ideals of R such that[Figure not available: see fulltext.], where E(σ) is the subgroup generated by all transvections of the net subgroup G(σ). and[Figure not available: see fulltext.] is the normalizer of G(σ). The subgroup E(σ) is normal in[Figure not available: see fulltext.]. To study the factor group[Figure not available: see fulltext.] we introduce an intermediate subgroup F(σ), E(σ) ≤ F(σ) ≤ G(σ). The group[Figure not available: see fulltext.] is finite and is connected with permutations in the symmetric group. The factor group G(σ)/F(σ) is Abelian - these are the values of a certain "determinant." In the calculation of F(σ)/E(σ) appears the SK1-functor. Results are stated without proof.
AB - We study the subgroups of the full linear group GL(n, R) over a Dedekind ring R that contain the group of quasidiagonal matrices of fixed type with diagonal blocks of at least third order, each of which is generated by elementary matrices. For any such subgroup H there exists a unique D-net σ of ideals of R such that[Figure not available: see fulltext.], where E(σ) is the subgroup generated by all transvections of the net subgroup G(σ). and[Figure not available: see fulltext.] is the normalizer of G(σ). The subgroup E(σ) is normal in[Figure not available: see fulltext.]. To study the factor group[Figure not available: see fulltext.] we introduce an intermediate subgroup F(σ), E(σ) ≤ F(σ) ≤ G(σ). The group[Figure not available: see fulltext.] is finite and is connected with permutations in the symmetric group. The factor group G(σ)/F(σ) is Abelian - these are the values of a certain "determinant." In the calculation of F(σ)/E(σ) appears the SK1-functor. Results are stated without proof.
UR - http://www.scopus.com/inward/record.url?scp=34250225169&partnerID=8YFLogxK
U2 - 10.1007/BF01476109
DO - 10.1007/BF01476109
M3 - Article
AN - SCOPUS:34250225169
VL - 19
SP - 982
EP - 987
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 1
ER -
ID: 76482753