Standard

Study of the double mathematical pendulum -- IV. Quantitative bounds on values of the system parameters when the homoclinic transversal intersections exist. / Ivanov, A.V.

в: Regular and Chaotic Dynamics, Том 6, № 1, 2001, стр. 53-94.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{f5fe4ca7a96840e49d665cf7c5346eb9,
title = "Study of the double mathematical pendulum -- IV. Quantitative bounds on values of the system parameters when the homoclinic transversal intersections exist.",
abstract = "We consider the double mathematical pendulum in the limit of small ratio of pendulum masses. Besides we assume that values of other two system parameters are close to the degenerate ones (i.e. zero or infinity). In these limit cases we prove asymptotic formulae for the homoclinic invariant of some special chosen homoclinic trajectories and obtain quantitative bounds on values of the system parameters when these formulae are valid.",
author = "A.V. Ivanov",
year = "2001",
language = "не определен",
volume = "6",
pages = "53--94",
journal = "Regular and Chaotic Dynamics",
issn = "1560-3547",
publisher = "МАИК {"}Наука/Интерпериодика{"}",
number = "1",

}

RIS

TY - JOUR

T1 - Study of the double mathematical pendulum -- IV. Quantitative bounds on values of the system parameters when the homoclinic transversal intersections exist.

AU - Ivanov, A.V.

PY - 2001

Y1 - 2001

N2 - We consider the double mathematical pendulum in the limit of small ratio of pendulum masses. Besides we assume that values of other two system parameters are close to the degenerate ones (i.e. zero or infinity). In these limit cases we prove asymptotic formulae for the homoclinic invariant of some special chosen homoclinic trajectories and obtain quantitative bounds on values of the system parameters when these formulae are valid.

AB - We consider the double mathematical pendulum in the limit of small ratio of pendulum masses. Besides we assume that values of other two system parameters are close to the degenerate ones (i.e. zero or infinity). In these limit cases we prove asymptotic formulae for the homoclinic invariant of some special chosen homoclinic trajectories and obtain quantitative bounds on values of the system parameters when these formulae are valid.

M3 - статья

VL - 6

SP - 53

EP - 94

JO - Regular and Chaotic Dynamics

JF - Regular and Chaotic Dynamics

SN - 1560-3547

IS - 1

ER -

ID: 5560645