Standard

Study of the double mathematical pendulum - III. Menikov's method applied to the system in the limit of small ratio of pendulums masses. / Ivanov, A.V.

в: Regular and Chaotic Dynamics, Том 5, № 3, 2000, стр. 329-344.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{f50883b9406e491f89ea36dec4671989,
title = "Study of the double mathematical pendulum - III. Menikov's method applied to the system in the limit of small ratio of pendulums masses",
abstract = "We consider the double mathematical pendulum in the limit when the ratio of pendulums masses is close to zero and if the value of one of other system parameters is close to degenerate value (i.e. zero or infinity). We investigate homoclinic intersections, using Melnikov's method, and obtain an asymptotic formula for the homoclinic invariant in this case.",
author = "A.V. Ivanov",
year = "2000",
language = "не определен",
volume = "5",
pages = "329--344",
journal = "Regular and Chaotic Dynamics",
issn = "1560-3547",
publisher = "МАИК {"}Наука/Интерпериодика{"}",
number = "3",

}

RIS

TY - JOUR

T1 - Study of the double mathematical pendulum - III. Menikov's method applied to the system in the limit of small ratio of pendulums masses

AU - Ivanov, A.V.

PY - 2000

Y1 - 2000

N2 - We consider the double mathematical pendulum in the limit when the ratio of pendulums masses is close to zero and if the value of one of other system parameters is close to degenerate value (i.e. zero or infinity). We investigate homoclinic intersections, using Melnikov's method, and obtain an asymptotic formula for the homoclinic invariant in this case.

AB - We consider the double mathematical pendulum in the limit when the ratio of pendulums masses is close to zero and if the value of one of other system parameters is close to degenerate value (i.e. zero or infinity). We investigate homoclinic intersections, using Melnikov's method, and obtain an asymptotic formula for the homoclinic invariant in this case.

M3 - статья

VL - 5

SP - 329

EP - 344

JO - Regular and Chaotic Dynamics

JF - Regular and Chaotic Dynamics

SN - 1560-3547

IS - 3

ER -

ID: 5560626