Standard

Study of the double mathematical pendulum - II. Investigation of exponentially small homoclinic intersections. / Ivanov, A.V.

в: Journal of Physics A: Mathematical and Theoretical, Том 34, № 49, 2001, стр. 11011-11031.

Результаты исследований: Научные публикации в периодических изданияхстатья

Harvard

Ivanov, AV 2001, 'Study of the double mathematical pendulum - II. Investigation of exponentially small homoclinic intersections', Journal of Physics A: Mathematical and Theoretical, Том. 34, № 49, стр. 11011-11031.

APA

Ivanov, A. V. (2001). Study of the double mathematical pendulum - II. Investigation of exponentially small homoclinic intersections. Journal of Physics A: Mathematical and Theoretical, 34(49), 11011-11031.

Vancouver

Ivanov AV. Study of the double mathematical pendulum - II. Investigation of exponentially small homoclinic intersections. Journal of Physics A: Mathematical and Theoretical. 2001;34(49):11011-11031.

Author

Ivanov, A.V. / Study of the double mathematical pendulum - II. Investigation of exponentially small homoclinic intersections. в: Journal of Physics A: Mathematical and Theoretical. 2001 ; Том 34, № 49. стр. 11011-11031.

BibTeX

@article{06cb90d5e87a45c39676a877941bab36,
title = "Study of the double mathematical pendulum - II. Investigation of exponentially small homoclinic intersections",
abstract = "We consider the double mathematical pendulum in the limit when the ratio of pendulum masses is close to zero and the ratio of pendulum lengths is close to infinity. We found that the limit system has a hyperbolic periodic trajectory, whose invariant manifolds intersect transversally and the intersections are exponentially small. In this case we obtain an asymptotic formula of the homoclinic invariant for the limit system.",
author = "A.V. Ivanov",
year = "2001",
language = "не определен",
volume = "34",
pages = "11011--11031",
journal = "Journal of Physics A: Mathematical and Theoretical",
issn = "1751-8113",
publisher = "IOP Publishing Ltd.",
number = "49",

}

RIS

TY - JOUR

T1 - Study of the double mathematical pendulum - II. Investigation of exponentially small homoclinic intersections

AU - Ivanov, A.V.

PY - 2001

Y1 - 2001

N2 - We consider the double mathematical pendulum in the limit when the ratio of pendulum masses is close to zero and the ratio of pendulum lengths is close to infinity. We found that the limit system has a hyperbolic periodic trajectory, whose invariant manifolds intersect transversally and the intersections are exponentially small. In this case we obtain an asymptotic formula of the homoclinic invariant for the limit system.

AB - We consider the double mathematical pendulum in the limit when the ratio of pendulum masses is close to zero and the ratio of pendulum lengths is close to infinity. We found that the limit system has a hyperbolic periodic trajectory, whose invariant manifolds intersect transversally and the intersections are exponentially small. In this case we obtain an asymptotic formula of the homoclinic invariant for the limit system.

M3 - статья

VL - 34

SP - 11011

EP - 11031

JO - Journal of Physics A: Mathematical and Theoretical

JF - Journal of Physics A: Mathematical and Theoretical

SN - 1751-8113

IS - 49

ER -

ID: 5560597