Результаты исследований: Научные публикации в периодических изданиях › статья
Study of the double mathematical pendulum - II. Investigation of exponentially small homoclinic intersections. / Ivanov, A.V.
в: Journal of Physics A: Mathematical and Theoretical, Том 34, № 49, 2001, стр. 11011-11031.Результаты исследований: Научные публикации в периодических изданиях › статья
}
TY - JOUR
T1 - Study of the double mathematical pendulum - II. Investigation of exponentially small homoclinic intersections
AU - Ivanov, A.V.
PY - 2001
Y1 - 2001
N2 - We consider the double mathematical pendulum in the limit when the ratio of pendulum masses is close to zero and the ratio of pendulum lengths is close to infinity. We found that the limit system has a hyperbolic periodic trajectory, whose invariant manifolds intersect transversally and the intersections are exponentially small. In this case we obtain an asymptotic formula of the homoclinic invariant for the limit system.
AB - We consider the double mathematical pendulum in the limit when the ratio of pendulum masses is close to zero and the ratio of pendulum lengths is close to infinity. We found that the limit system has a hyperbolic periodic trajectory, whose invariant manifolds intersect transversally and the intersections are exponentially small. In this case we obtain an asymptotic formula of the homoclinic invariant for the limit system.
M3 - статья
VL - 34
SP - 11011
EP - 11031
JO - Journal of Physics A: Mathematical and Theoretical
JF - Journal of Physics A: Mathematical and Theoretical
SN - 1751-8113
IS - 49
ER -
ID: 5560597