Standard

Study of the double mathematical pendulum - I. Numerical investigation of homoclinic transversal intersections. / Ivanov, A.V.

в: Regular and Chaotic Dynamics, Том 4, № 1, 1999, стр. 104-116.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{f5bd748c28814ad7a02e193ca3dafd89,
title = "Study of the double mathematical pendulum - I. Numerical investigation of homoclinic transversal intersections.",
abstract = "We investigate the separatrices splitting of the double mathematical pendulum. The numerical method to find periodic hyperbolic trajectories, homoclinic transversal intersections of its separatreces is discussed. This method is realized for some values of the system parameters and it is found out that homoclinic invariants corresponding to these parameters are not equal to zero.",
author = "A.V. Ivanov",
year = "1999",
language = "не определен",
volume = "4",
pages = "104--116",
journal = "Regular and Chaotic Dynamics",
issn = "1560-3547",
publisher = "МАИК {"}Наука/Интерпериодика{"}",
number = "1",

}

RIS

TY - JOUR

T1 - Study of the double mathematical pendulum - I. Numerical investigation of homoclinic transversal intersections.

AU - Ivanov, A.V.

PY - 1999

Y1 - 1999

N2 - We investigate the separatrices splitting of the double mathematical pendulum. The numerical method to find periodic hyperbolic trajectories, homoclinic transversal intersections of its separatreces is discussed. This method is realized for some values of the system parameters and it is found out that homoclinic invariants corresponding to these parameters are not equal to zero.

AB - We investigate the separatrices splitting of the double mathematical pendulum. The numerical method to find periodic hyperbolic trajectories, homoclinic transversal intersections of its separatreces is discussed. This method is realized for some values of the system parameters and it is found out that homoclinic invariants corresponding to these parameters are not equal to zero.

M3 - статья

VL - 4

SP - 104

EP - 116

JO - Regular and Chaotic Dynamics

JF - Regular and Chaotic Dynamics

SN - 1560-3547

IS - 1

ER -

ID: 5560575