Standard

Structural variety of aluminium and gallium coordination polymers based on bis-pyridylethylene : From molecular complexes to ionic networks. / Gugin, Nikita Y.; Virovets, Alexander; Peresypkina, Eugenia; Davydova, Elena I.; Timoshkin, Alexey Y.

в: CrystEngComm, Том 22, № 27, 21.07.2020, стр. 4531-4543.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{fcdebd89a9de4e3199d6f6802819daf9,
title = "Structural variety of aluminium and gallium coordination polymers based on bis-pyridylethylene: From molecular complexes to ionic networks",
abstract = "A systematic structural study of the complexes formed by aluminium and gallium trihalides with 1,2-bis(4-pyridyl)ethylene (bpe) was performed. Quantum chemical computations revealed that the energy differences between the ionic and the molecular complexes expected in the MX3-bpe (M = Al, Ga; X = Cl, Br) system are very small. These computational findings indicate that this system is a rich source of compounds with diverse structural motifs. Indeed, eleven complexes, namely, [M2Cl4(bpe)5]2+[M2Cl4(bpe)6]2+[MCl4]-4∗3bpe (MAl (1), MGa (2)), [Al3Br8(bpe)3]+[AlBr4]- (3), [Al2Br4(bpe)5]2+[AlBr4]-2∗bpe (4), [Ga2Br4(bpe)7]2+[GaBr4]-2∗bpe (5), [GaCl3(bpe)]∞ (6), [(MX3)2(bpe)] (MX3 = AlCl3 (7), AlBr3 (8), GaCl3 (9), GaBr3 (10a, 10b), and [(GaBr3)2(bpe)]∗bpe (11) were synthesized in a solvent-free melt reaction of group 13 metal halides and bpe. The diversity of the complexes obtained shows the marked effect of different reagent ratios as well as Lewis acid on the product structures. Ionic coordination polymers (CPs) 1 and 2 exhibit isostructural unusual mixed one-dimensional-two-dimensional (1D-2D) networks. Interaction of bpe with excess AlBr3 yielded ionic 1D CP 3 while the same reaction in excess bpe produced ionic 2D CP 4. Reaction of GaBr3 and bpe in equimolar ratio yielded binuclear ionic complex 5 in a mixture with an adduct solvate 11. The only molecular CP 6 with 1D structure was isolated when the reaction between GaCl3 and bpe was carried out in both 1 : 1 and 1 : 2 stoichiometric ratios. In the case of the 2 : 1 ratio, irrespective of the Lewis acid, [(MX3)2(bpe)] adducts 7-10a and 10b were obtained. Remarkably, complex 10 crystallizes in two polymorphic modifications, 10a and 10b. The solid-state structures of complexes 1, 3-5, and 7-11 were determined for the first time.",
keywords = "METAL-ORGANIC FRAMEWORKS, HETEROGENEOUS CATALYSTS, ADSORPTION, INDIUM, SEPARATION, 1D, PYRAZINE, REMOVAL, 2D",
author = "Gugin, {Nikita Y.} and Alexander Virovets and Eugenia Peresypkina and Davydova, {Elena I.} and Timoshkin, {Alexey Y.}",
year = "2020",
month = jul,
day = "21",
doi = "10.1039/d0ce00541j",
language = "English",
volume = "22",
pages = "4531--4543",
journal = "CrystEngComm",
issn = "1466-8033",
publisher = "Royal Society of Chemistry",
number = "27",

}

RIS

TY - JOUR

T1 - Structural variety of aluminium and gallium coordination polymers based on bis-pyridylethylene

T2 - From molecular complexes to ionic networks

AU - Gugin, Nikita Y.

AU - Virovets, Alexander

AU - Peresypkina, Eugenia

AU - Davydova, Elena I.

AU - Timoshkin, Alexey Y.

PY - 2020/7/21

Y1 - 2020/7/21

N2 - A systematic structural study of the complexes formed by aluminium and gallium trihalides with 1,2-bis(4-pyridyl)ethylene (bpe) was performed. Quantum chemical computations revealed that the energy differences between the ionic and the molecular complexes expected in the MX3-bpe (M = Al, Ga; X = Cl, Br) system are very small. These computational findings indicate that this system is a rich source of compounds with diverse structural motifs. Indeed, eleven complexes, namely, [M2Cl4(bpe)5]2+[M2Cl4(bpe)6]2+[MCl4]-4∗3bpe (MAl (1), MGa (2)), [Al3Br8(bpe)3]+[AlBr4]- (3), [Al2Br4(bpe)5]2+[AlBr4]-2∗bpe (4), [Ga2Br4(bpe)7]2+[GaBr4]-2∗bpe (5), [GaCl3(bpe)]∞ (6), [(MX3)2(bpe)] (MX3 = AlCl3 (7), AlBr3 (8), GaCl3 (9), GaBr3 (10a, 10b), and [(GaBr3)2(bpe)]∗bpe (11) were synthesized in a solvent-free melt reaction of group 13 metal halides and bpe. The diversity of the complexes obtained shows the marked effect of different reagent ratios as well as Lewis acid on the product structures. Ionic coordination polymers (CPs) 1 and 2 exhibit isostructural unusual mixed one-dimensional-two-dimensional (1D-2D) networks. Interaction of bpe with excess AlBr3 yielded ionic 1D CP 3 while the same reaction in excess bpe produced ionic 2D CP 4. Reaction of GaBr3 and bpe in equimolar ratio yielded binuclear ionic complex 5 in a mixture with an adduct solvate 11. The only molecular CP 6 with 1D structure was isolated when the reaction between GaCl3 and bpe was carried out in both 1 : 1 and 1 : 2 stoichiometric ratios. In the case of the 2 : 1 ratio, irrespective of the Lewis acid, [(MX3)2(bpe)] adducts 7-10a and 10b were obtained. Remarkably, complex 10 crystallizes in two polymorphic modifications, 10a and 10b. The solid-state structures of complexes 1, 3-5, and 7-11 were determined for the first time.

AB - A systematic structural study of the complexes formed by aluminium and gallium trihalides with 1,2-bis(4-pyridyl)ethylene (bpe) was performed. Quantum chemical computations revealed that the energy differences between the ionic and the molecular complexes expected in the MX3-bpe (M = Al, Ga; X = Cl, Br) system are very small. These computational findings indicate that this system is a rich source of compounds with diverse structural motifs. Indeed, eleven complexes, namely, [M2Cl4(bpe)5]2+[M2Cl4(bpe)6]2+[MCl4]-4∗3bpe (MAl (1), MGa (2)), [Al3Br8(bpe)3]+[AlBr4]- (3), [Al2Br4(bpe)5]2+[AlBr4]-2∗bpe (4), [Ga2Br4(bpe)7]2+[GaBr4]-2∗bpe (5), [GaCl3(bpe)]∞ (6), [(MX3)2(bpe)] (MX3 = AlCl3 (7), AlBr3 (8), GaCl3 (9), GaBr3 (10a, 10b), and [(GaBr3)2(bpe)]∗bpe (11) were synthesized in a solvent-free melt reaction of group 13 metal halides and bpe. The diversity of the complexes obtained shows the marked effect of different reagent ratios as well as Lewis acid on the product structures. Ionic coordination polymers (CPs) 1 and 2 exhibit isostructural unusual mixed one-dimensional-two-dimensional (1D-2D) networks. Interaction of bpe with excess AlBr3 yielded ionic 1D CP 3 while the same reaction in excess bpe produced ionic 2D CP 4. Reaction of GaBr3 and bpe in equimolar ratio yielded binuclear ionic complex 5 in a mixture with an adduct solvate 11. The only molecular CP 6 with 1D structure was isolated when the reaction between GaCl3 and bpe was carried out in both 1 : 1 and 1 : 2 stoichiometric ratios. In the case of the 2 : 1 ratio, irrespective of the Lewis acid, [(MX3)2(bpe)] adducts 7-10a and 10b were obtained. Remarkably, complex 10 crystallizes in two polymorphic modifications, 10a and 10b. The solid-state structures of complexes 1, 3-5, and 7-11 were determined for the first time.

KW - METAL-ORGANIC FRAMEWORKS

KW - HETEROGENEOUS CATALYSTS

KW - ADSORPTION

KW - INDIUM

KW - SEPARATION

KW - 1D

KW - PYRAZINE

KW - REMOVAL

KW - 2D

UR - http://www.scopus.com/inward/record.url?scp=85088242661&partnerID=8YFLogxK

U2 - 10.1039/d0ce00541j

DO - 10.1039/d0ce00541j

M3 - Article

AN - SCOPUS:85088242661

VL - 22

SP - 4531

EP - 4543

JO - CrystEngComm

JF - CrystEngComm

SN - 1466-8033

IS - 27

ER -

ID: 61463553