Результаты исследований: Научные публикации в периодических изданиях › статья
Structural analysis of strained quantum dots using nuclear magnetic resonance. / Chekhovich, E. A.; Kavokin, K. V.; Puebla, J.; Krysa, A. B.; Hopkinson, M.; Andreev, A. D.; Sanchez, A. M.; Beanland, R.; Skolnick, M. S.; Tartakovskii, A. I.
в: Nature Nanotechnology, Том 7, № 10, 2012, стр. 646–650.Результаты исследований: Научные публикации в периодических изданиях › статья
}
TY - JOUR
T1 - Structural analysis of strained quantum dots using nuclear magnetic resonance
AU - Chekhovich, E. A.
AU - Kavokin, K. V.
AU - Puebla, J.
AU - Krysa, A. B.
AU - Hopkinson, M.
AU - Andreev, A. D.
AU - Sanchez, A. M.
AU - Beanland, R.
AU - Skolnick, M. S.
AU - Tartakovskii, A. I.
PY - 2012
Y1 - 2012
N2 - Strained semiconductor nanostructures can be used to make single-photon sources, detectors and photovoltaic devices3, and could potentially be used to create quantum logic devices. The development of such applications requires techniques capable of nanoscale structural analysis, but the microscopy methods typically used to analyse these materials are destructive. NMR techniques can provide non-invasive structural analysis, but have been restricted to strain-free semiconductor nanostructures because of the significant strain-induced quadrupole broadening of the NMR spectra. Here, we show that optically detected NMR spectroscopy can be used to analyse individual strained quantum dots. Our approach uses continuous-wave broadband radiofrequency excitation with a specially designed spectral pattern and can probe individual strained nanostructures containing only 1 × 105 quadrupole nuclear spins. With this technique, we are able to measure the strain distribution and chemical composition of quantum dots in the volu
AB - Strained semiconductor nanostructures can be used to make single-photon sources, detectors and photovoltaic devices3, and could potentially be used to create quantum logic devices. The development of such applications requires techniques capable of nanoscale structural analysis, but the microscopy methods typically used to analyse these materials are destructive. NMR techniques can provide non-invasive structural analysis, but have been restricted to strain-free semiconductor nanostructures because of the significant strain-induced quadrupole broadening of the NMR spectra. Here, we show that optically detected NMR spectroscopy can be used to analyse individual strained quantum dots. Our approach uses continuous-wave broadband radiofrequency excitation with a specially designed spectral pattern and can probe individual strained nanostructures containing only 1 × 105 quadrupole nuclear spins. With this technique, we are able to measure the strain distribution and chemical composition of quantum dots in the volu
U2 - DOI: 10.1038/nnano.2012.142
DO - DOI: 10.1038/nnano.2012.142
M3 - статья
VL - 7
SP - 646
EP - 650
JO - Nature Nanotechnology
JF - Nature Nanotechnology
SN - 1748-3387
IS - 10
ER -
ID: 5391662