Standard

Structural analysis of strained quantum dots using nuclear magnetic resonance. / Chekhovich, E. A.; Kavokin, K. V.; Puebla, J.; Krysa, A. B.; Hopkinson, M.; Andreev, A. D.; Sanchez, A. M.; Beanland, R.; Skolnick, M. S.; Tartakovskii, A. I.

в: Nature Nanotechnology, Том 7, № 10, 2012, стр. 646–650.

Результаты исследований: Научные публикации в периодических изданияхстатья

Harvard

Chekhovich, EA, Kavokin, KV, Puebla, J, Krysa, AB, Hopkinson, M, Andreev, AD, Sanchez, AM, Beanland, R, Skolnick, MS & Tartakovskii, AI 2012, 'Structural analysis of strained quantum dots using nuclear magnetic resonance', Nature Nanotechnology, Том. 7, № 10, стр. 646–650. https://doi.org/DOI: 10.1038/nnano.2012.142

APA

Chekhovich, E. A., Kavokin, K. V., Puebla, J., Krysa, A. B., Hopkinson, M., Andreev, A. D., Sanchez, A. M., Beanland, R., Skolnick, M. S., & Tartakovskii, A. I. (2012). Structural analysis of strained quantum dots using nuclear magnetic resonance. Nature Nanotechnology, 7(10), 646–650. https://doi.org/DOI: 10.1038/nnano.2012.142

Vancouver

Chekhovich EA, Kavokin KV, Puebla J, Krysa AB, Hopkinson M, Andreev AD и пр. Structural analysis of strained quantum dots using nuclear magnetic resonance. Nature Nanotechnology. 2012;7(10):646–650. https://doi.org/DOI: 10.1038/nnano.2012.142

Author

Chekhovich, E. A. ; Kavokin, K. V. ; Puebla, J. ; Krysa, A. B. ; Hopkinson, M. ; Andreev, A. D. ; Sanchez, A. M. ; Beanland, R. ; Skolnick, M. S. ; Tartakovskii, A. I. / Structural analysis of strained quantum dots using nuclear magnetic resonance. в: Nature Nanotechnology. 2012 ; Том 7, № 10. стр. 646–650.

BibTeX

@article{898bba17bcc9499ca7d58e4cce850e1c,
title = "Structural analysis of strained quantum dots using nuclear magnetic resonance",
abstract = "Strained semiconductor nanostructures can be used to make single-photon sources, detectors and photovoltaic devices3, and could potentially be used to create quantum logic devices. The development of such applications requires techniques capable of nanoscale structural analysis, but the microscopy methods typically used to analyse these materials are destructive. NMR techniques can provide non-invasive structural analysis, but have been restricted to strain-free semiconductor nanostructures because of the significant strain-induced quadrupole broadening of the NMR spectra. Here, we show that optically detected NMR spectroscopy can be used to analyse individual strained quantum dots. Our approach uses continuous-wave broadband radiofrequency excitation with a specially designed spectral pattern and can probe individual strained nanostructures containing only 1 × 105 quadrupole nuclear spins. With this technique, we are able to measure the strain distribution and chemical composition of quantum dots in the volu",
author = "Chekhovich, {E. A.} and Kavokin, {K. V.} and J. Puebla and Krysa, {A. B.} and M. Hopkinson and Andreev, {A. D.} and Sanchez, {A. M.} and R. Beanland and Skolnick, {M. S.} and Tartakovskii, {A. I.}",
year = "2012",
doi = "DOI: 10.1038/nnano.2012.142",
language = "не определен",
volume = "7",
pages = "646–650",
journal = "Nature Nanotechnology",
issn = "1748-3387",
publisher = "Nature Publishing Group",
number = "10",

}

RIS

TY - JOUR

T1 - Structural analysis of strained quantum dots using nuclear magnetic resonance

AU - Chekhovich, E. A.

AU - Kavokin, K. V.

AU - Puebla, J.

AU - Krysa, A. B.

AU - Hopkinson, M.

AU - Andreev, A. D.

AU - Sanchez, A. M.

AU - Beanland, R.

AU - Skolnick, M. S.

AU - Tartakovskii, A. I.

PY - 2012

Y1 - 2012

N2 - Strained semiconductor nanostructures can be used to make single-photon sources, detectors and photovoltaic devices3, and could potentially be used to create quantum logic devices. The development of such applications requires techniques capable of nanoscale structural analysis, but the microscopy methods typically used to analyse these materials are destructive. NMR techniques can provide non-invasive structural analysis, but have been restricted to strain-free semiconductor nanostructures because of the significant strain-induced quadrupole broadening of the NMR spectra. Here, we show that optically detected NMR spectroscopy can be used to analyse individual strained quantum dots. Our approach uses continuous-wave broadband radiofrequency excitation with a specially designed spectral pattern and can probe individual strained nanostructures containing only 1 × 105 quadrupole nuclear spins. With this technique, we are able to measure the strain distribution and chemical composition of quantum dots in the volu

AB - Strained semiconductor nanostructures can be used to make single-photon sources, detectors and photovoltaic devices3, and could potentially be used to create quantum logic devices. The development of such applications requires techniques capable of nanoscale structural analysis, but the microscopy methods typically used to analyse these materials are destructive. NMR techniques can provide non-invasive structural analysis, but have been restricted to strain-free semiconductor nanostructures because of the significant strain-induced quadrupole broadening of the NMR spectra. Here, we show that optically detected NMR spectroscopy can be used to analyse individual strained quantum dots. Our approach uses continuous-wave broadband radiofrequency excitation with a specially designed spectral pattern and can probe individual strained nanostructures containing only 1 × 105 quadrupole nuclear spins. With this technique, we are able to measure the strain distribution and chemical composition of quantum dots in the volu

U2 - DOI: 10.1038/nnano.2012.142

DO - DOI: 10.1038/nnano.2012.142

M3 - статья

VL - 7

SP - 646

EP - 650

JO - Nature Nanotechnology

JF - Nature Nanotechnology

SN - 1748-3387

IS - 10

ER -

ID: 5391662