Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Strongly Nonlinear Diffusion in Turbulent Environment: A Problem with Infinitely Many Couplings. / Антонов, Николай Викторович; Бабакин, Андрей Александрович; Какинь, Полина Игоревна.
в: Universe, Том 8, № 2, 121, 13.02.2022.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Strongly Nonlinear Diffusion in Turbulent Environment: A Problem with Infinitely Many Couplings
AU - Антонов, Николай Викторович
AU - Бабакин, Андрей Александрович
AU - Какинь, Полина Игоревна
PY - 2022/2/13
Y1 - 2022/2/13
N2 - The field theoretic renormalization group is applied to the strongly nonlinear stochastic advection-diffusion equation. The turbulent advection is modelled by the Kazantsev–Kraichnan “rapid-change” ensemble. As a requirement of the renormalizability, the model necessarily involves infinite number of coupling constants (“charges”). The one-loop counterterm is calculated explicitly. The corresponding renormalization group equation demonstrates existence of a pair of two-dimensional surfaces of fixed points in the infinite-dimensional parameter space. If the surfaces contain infrared attractive regions, the problem allows for the large-scale, long-time scaling behaviour. For the first surface (advection is irrelevant), the critical dimensions of the scalar field, the response field and the frequency are nonuniversal (through the dependence on the effective couplings) but satisfy certain exact identities. For the second surface (advection is relevant), the dimensions are universal and they are found exactly.
AB - The field theoretic renormalization group is applied to the strongly nonlinear stochastic advection-diffusion equation. The turbulent advection is modelled by the Kazantsev–Kraichnan “rapid-change” ensemble. As a requirement of the renormalizability, the model necessarily involves infinite number of coupling constants (“charges”). The one-loop counterterm is calculated explicitly. The corresponding renormalization group equation demonstrates existence of a pair of two-dimensional surfaces of fixed points in the infinite-dimensional parameter space. If the surfaces contain infrared attractive regions, the problem allows for the large-scale, long-time scaling behaviour. For the first surface (advection is irrelevant), the critical dimensions of the scalar field, the response field and the frequency are nonuniversal (through the dependence on the effective couplings) but satisfy certain exact identities. For the second surface (advection is relevant), the dimensions are universal and they are found exactly.
KW - Critical behaviour
KW - Nonlinear diffusion
KW - Renormalization group
KW - Turbulence
KW - nonlinear diffusion
KW - RENORMALIZATION-GROUP ANALYSIS
KW - MODEL
KW - EROSION
KW - renormalization group
KW - turbulence
KW - EQUATION
KW - critical behaviour
UR - http://www.scopus.com/inward/record.url?scp=85126727665&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/e7d83c5c-e549-3651-b1c9-33b000b77d4a/
U2 - 10.3390/universe8020121
DO - 10.3390/universe8020121
M3 - Article
VL - 8
JO - Universe
JF - Universe
SN - 2218-1997
IS - 2
M1 - 121
ER -
ID: 92566180