Standard

Stress concentration and distribution at triple junction pores of three-fold symmetry in ceramics. / Vakaeva, A. B.; Krasnitckii, S. A.; Smirnov, A. M.; Grekov, M. A.; Gutkin, M. Y.

в: Reviews on Advanced Materials Science, Том 57, № 1, 2018, стр. 63-71.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Vakaeva, AB, Krasnitckii, SA, Smirnov, AM, Grekov, MA & Gutkin, MY 2018, 'Stress concentration and distribution at triple junction pores of three-fold symmetry in ceramics', Reviews on Advanced Materials Science, Том. 57, № 1, стр. 63-71. https://doi.org/10.1515/rams-2018-0048

APA

Vancouver

Author

Vakaeva, A. B. ; Krasnitckii, S. A. ; Smirnov, A. M. ; Grekov, M. A. ; Gutkin, M. Y. / Stress concentration and distribution at triple junction pores of three-fold symmetry in ceramics. в: Reviews on Advanced Materials Science. 2018 ; Том 57, № 1. стр. 63-71.

BibTeX

@article{f2e20f44f2fd432e9ad44e4e0a9ef2e0,
title = "Stress concentration and distribution at triple junction pores of three-fold symmetry in ceramics",
abstract = "The stress concentration and distribution around a triple-junction pore of three-fold symmetry in a polycrystalline ceramic material is considered. The perturbation method in the theory of plane elasticity is used to solve the problem of a nearly circular pore of three-fold symmetry under remote loading in the first approximation. The solution was specified to the uniaxial tension of convex and concave rounded triangular pores. The stress concentration on the pore surface and the stress distribution in vicinity of the pore along its symmetry axes are studied and discussed in detail. The numerical results, issued from the first-order approximation analytical solution, are compared with those of finite-element calculations.",
author = "Vakaeva, {A. B.} and Krasnitckii, {S. A.} and Smirnov, {A. M.} and Grekov, {M. A.} and Gutkin, {M. Y.}",
note = "Funding Information: A.B. Vakaeva and M.A. Grekov acknowledge the Russian Foundation for Basic Research (RFBR, project18-01-0468,Mechanics ofsurfacephenom-ena, superficial and subsurface defects in a solid body)forthe su portinprovidingtheanalyticalcal-culations of stress distributionarounda triple-junc-tionpore. Publisher Copyright: {\textcopyright} 2018 Advanced Study Center Co. Ltd. Copyright: Copyright 2019 Elsevier B.V., All rights reserved.",
year = "2018",
doi = "10.1515/rams-2018-0048",
language = "English",
volume = "57",
pages = "63--71",
journal = "Reviews on Advanced Materials Science",
issn = "1606-5131",
publisher = "Институт проблем машиноведения РАН",
number = "1",

}

RIS

TY - JOUR

T1 - Stress concentration and distribution at triple junction pores of three-fold symmetry in ceramics

AU - Vakaeva, A. B.

AU - Krasnitckii, S. A.

AU - Smirnov, A. M.

AU - Grekov, M. A.

AU - Gutkin, M. Y.

N1 - Funding Information: A.B. Vakaeva and M.A. Grekov acknowledge the Russian Foundation for Basic Research (RFBR, project18-01-0468,Mechanics ofsurfacephenom-ena, superficial and subsurface defects in a solid body)forthe su portinprovidingtheanalyticalcal-culations of stress distributionarounda triple-junc-tionpore. Publisher Copyright: © 2018 Advanced Study Center Co. Ltd. Copyright: Copyright 2019 Elsevier B.V., All rights reserved.

PY - 2018

Y1 - 2018

N2 - The stress concentration and distribution around a triple-junction pore of three-fold symmetry in a polycrystalline ceramic material is considered. The perturbation method in the theory of plane elasticity is used to solve the problem of a nearly circular pore of three-fold symmetry under remote loading in the first approximation. The solution was specified to the uniaxial tension of convex and concave rounded triangular pores. The stress concentration on the pore surface and the stress distribution in vicinity of the pore along its symmetry axes are studied and discussed in detail. The numerical results, issued from the first-order approximation analytical solution, are compared with those of finite-element calculations.

AB - The stress concentration and distribution around a triple-junction pore of three-fold symmetry in a polycrystalline ceramic material is considered. The perturbation method in the theory of plane elasticity is used to solve the problem of a nearly circular pore of three-fold symmetry under remote loading in the first approximation. The solution was specified to the uniaxial tension of convex and concave rounded triangular pores. The stress concentration on the pore surface and the stress distribution in vicinity of the pore along its symmetry axes are studied and discussed in detail. The numerical results, issued from the first-order approximation analytical solution, are compared with those of finite-element calculations.

UR - http://www.scopus.com/inward/record.url?scp=85064169776&partnerID=8YFLogxK

U2 - 10.1515/rams-2018-0048

DO - 10.1515/rams-2018-0048

M3 - Article

AN - SCOPUS:85064169776

VL - 57

SP - 63

EP - 71

JO - Reviews on Advanced Materials Science

JF - Reviews on Advanced Materials Science

SN - 1606-5131

IS - 1

ER -

ID: 37522048