Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Strength and Fracture Mechanisms of Nanostructured Metallic Materials Under Single Kinds of Loading. / Klevtsov, G. V.; Valiev, R. Z.; Klevtsova, N. A.; Zaripov, N. G.; Karavaeva, M. V.
в: Metal Science and Heat Treatment, Том 59, № 9-10, 01.01.2018, стр. 597-605.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Strength and Fracture Mechanisms of Nanostructured Metallic Materials Under Single Kinds of Loading
AU - Klevtsov, G. V.
AU - Valiev, R. Z.
AU - Klevtsova, N. A.
AU - Zaripov, N. G.
AU - Karavaeva, M. V.
PY - 2018/1/1
Y1 - 2018/1/1
N2 - The effect of nanostructuring on the strength and fracture mechanism of materials possessing different crystal lattices is analyzed on the basis of available reports and experimental data of the authors. The structure, the hardness, the crack resistance, and the strength and ductility characteristics of steel 10 (bcc lattice), aluminum alloy AK4-1 (fcc lattice), austenitic steel AISI 321 (fcc lattice) are studied after equal channel angular pressing (ECAP) and those of Grade 4 titanium (hcp lattice) are studied after a ECAP-conform process (ECAP-C). It is shown that the ultrafine-grained (UFG) structure produced by the ECAP affects ambiguously the static crack resistance of the materials studied. The type of the crystal lattice influences substantially the temperature behavior of the impact toughness of the studied materials with UFG structure.
AB - The effect of nanostructuring on the strength and fracture mechanism of materials possessing different crystal lattices is analyzed on the basis of available reports and experimental data of the authors. The structure, the hardness, the crack resistance, and the strength and ductility characteristics of steel 10 (bcc lattice), aluminum alloy AK4-1 (fcc lattice), austenitic steel AISI 321 (fcc lattice) are studied after equal channel angular pressing (ECAP) and those of Grade 4 titanium (hcp lattice) are studied after a ECAP-conform process (ECAP-C). It is shown that the ultrafine-grained (UFG) structure produced by the ECAP affects ambiguously the static crack resistance of the materials studied. The type of the crystal lattice influences substantially the temperature behavior of the impact toughness of the studied materials with UFG structure.
KW - aluminum alloy
KW - crack resistance
KW - equal channel angular pressing (ECAP)
KW - fracture mechanism
KW - hardness
KW - impact toughness
KW - nanostructured materials
KW - steel
KW - strength
KW - titanium
KW - type of crystal lattice
KW - ultrafine-grained (UFG) structure
UR - http://www.scopus.com/inward/record.url?scp=85040649123&partnerID=8YFLogxK
UR - http://www.mendeley.com/research/strength-fracture-mechanisms-nanostructured-metallic-materials-under-single-kinds-loading
U2 - 10.1007/s11041-018-0197-2
DO - 10.1007/s11041-018-0197-2
M3 - Article
AN - SCOPUS:85040649123
VL - 59
SP - 597
EP - 605
JO - Metal Science and Heat Treatment
JF - Metal Science and Heat Treatment
SN - 0026-0673
IS - 9-10
ER -
ID: 35161203