Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Stochastic Navier-Stokes equation for a compressible fluid: Two-loop approximation. / Hnatič, Michal; Gulitskiy, Nikolay M.; Lučivjanský, Tomáš; Mižišin, Lukáš; Škultéty, Viktor.
11th Chaotic Modeling and Simulation International Conference, 2018. ред. / Christos H. Skiadas; Ihor Lubashevsky. Springer Nature, 2019. стр. 175-187 (Springer Proceedings in Complexity).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - Stochastic Navier-Stokes equation for a compressible fluid: Two-loop approximation
AU - Hnatič, Michal
AU - Gulitskiy, Nikolay M.
AU - Lučivjanský, Tomáš
AU - Mižišin, Lukáš
AU - Škultéty, Viktor
PY - 2019/1/1
Y1 - 2019/1/1
N2 - A model of fully developed turbulence of a compressible fluid is briefly reviewed. It is assumed that fluid dynamics is governed by a stochastic version of Navier-Stokes equation. We show how corresponding field theoretic-model can be obtained and further analyzed by means of the perturbative renormalization group. Two fixed points of the RG equations are found. The perturbation theory is constructed within formal expansion scheme in parameter y, which describes scaling behavior of random force fluctuations. Actual calculations for fixed points’ coordinates are performed to two-loop order.
AB - A model of fully developed turbulence of a compressible fluid is briefly reviewed. It is assumed that fluid dynamics is governed by a stochastic version of Navier-Stokes equation. We show how corresponding field theoretic-model can be obtained and further analyzed by means of the perturbative renormalization group. Two fixed points of the RG equations are found. The perturbation theory is constructed within formal expansion scheme in parameter y, which describes scaling behavior of random force fluctuations. Actual calculations for fixed points’ coordinates are performed to two-loop order.
KW - Anomalous scaling
KW - Compressibility
KW - Field-theoretic renormalization group
KW - Stochastic Navier-Stokes equation
UR - http://www.scopus.com/inward/record.url?scp=85067243450&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-15297-0_16
DO - 10.1007/978-3-030-15297-0_16
M3 - Conference contribution
AN - SCOPUS:85067243450
SN - 9783030152963
T3 - Springer Proceedings in Complexity
SP - 175
EP - 187
BT - 11th Chaotic Modeling and Simulation International Conference, 2018
A2 - Skiadas, Christos H.
A2 - Lubashevsky, Ihor
PB - Springer Nature
T2 - 11th International Conference on Chaotic Modeling, Simulation and Applications, CHAOS 2018
Y2 - 5 June 2018 through 8 June 2018
ER -
ID: 51078836