Standard

Stochastic Navier-Stokes equation for a compressible fluid: Two-loop approximation. / Hnatič, Michal; Gulitskiy, Nikolay M.; Lučivjanský, Tomáš; Mižišin, Lukáš; Škultéty, Viktor.

11th Chaotic Modeling and Simulation International Conference, 2018. ред. / Christos H. Skiadas; Ihor Lubashevsky. Springer Nature, 2019. стр. 175-187 (Springer Proceedings in Complexity).

Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаяРецензирование

Harvard

Hnatič, M, Gulitskiy, NM, Lučivjanský, T, Mižišin, L & Škultéty, V 2019, Stochastic Navier-Stokes equation for a compressible fluid: Two-loop approximation. в CH Skiadas & I Lubashevsky (ред.), 11th Chaotic Modeling and Simulation International Conference, 2018. Springer Proceedings in Complexity, Springer Nature, стр. 175-187, 11th International Conference on Chaotic Modeling, Simulation and Applications, CHAOS 2018, Rome, Италия, 5/06/18. https://doi.org/10.1007/978-3-030-15297-0_16

APA

Hnatič, M., Gulitskiy, N. M., Lučivjanský, T., Mižišin, L., & Škultéty, V. (2019). Stochastic Navier-Stokes equation for a compressible fluid: Two-loop approximation. в C. H. Skiadas, & I. Lubashevsky (Ред.), 11th Chaotic Modeling and Simulation International Conference, 2018 (стр. 175-187). (Springer Proceedings in Complexity). Springer Nature. https://doi.org/10.1007/978-3-030-15297-0_16

Vancouver

Hnatič M, Gulitskiy NM, Lučivjanský T, Mižišin L, Škultéty V. Stochastic Navier-Stokes equation for a compressible fluid: Two-loop approximation. в Skiadas CH, Lubashevsky I, Редакторы, 11th Chaotic Modeling and Simulation International Conference, 2018. Springer Nature. 2019. стр. 175-187. (Springer Proceedings in Complexity). https://doi.org/10.1007/978-3-030-15297-0_16

Author

Hnatič, Michal ; Gulitskiy, Nikolay M. ; Lučivjanský, Tomáš ; Mižišin, Lukáš ; Škultéty, Viktor. / Stochastic Navier-Stokes equation for a compressible fluid: Two-loop approximation. 11th Chaotic Modeling and Simulation International Conference, 2018. Редактор / Christos H. Skiadas ; Ihor Lubashevsky. Springer Nature, 2019. стр. 175-187 (Springer Proceedings in Complexity).

BibTeX

@inproceedings{14d82f147dac4b4495d9e7a52cc6324c,
title = "Stochastic Navier-Stokes equation for a compressible fluid: Two-loop approximation",
abstract = "A model of fully developed turbulence of a compressible fluid is briefly reviewed. It is assumed that fluid dynamics is governed by a stochastic version of Navier-Stokes equation. We show how corresponding field theoretic-model can be obtained and further analyzed by means of the perturbative renormalization group. Two fixed points of the RG equations are found. The perturbation theory is constructed within formal expansion scheme in parameter y, which describes scaling behavior of random force fluctuations. Actual calculations for fixed points{\textquoteright} coordinates are performed to two-loop order.",
keywords = "Anomalous scaling, Compressibility, Field-theoretic renormalization group, Stochastic Navier-Stokes equation",
author = "Michal Hnati{\v c} and Gulitskiy, {Nikolay M.} and Tom{\'a}{\v s} Lu{\v c}ivjansk{\'y} and Luk{\'a}{\v s} Mi{\v z}i{\v s}in and Viktor {\v S}kult{\'e}ty",
year = "2019",
month = jan,
day = "1",
doi = "10.1007/978-3-030-15297-0_16",
language = "English",
isbn = "9783030152963",
series = "Springer Proceedings in Complexity",
publisher = "Springer Nature",
pages = "175--187",
editor = "Skiadas, {Christos H.} and Ihor Lubashevsky",
booktitle = "11th Chaotic Modeling and Simulation International Conference, 2018",
address = "Germany",
note = "11th International Conference on Chaotic Modeling, Simulation and Applications, CHAOS 2018 ; Conference date: 05-06-2018 Through 08-06-2018",

}

RIS

TY - GEN

T1 - Stochastic Navier-Stokes equation for a compressible fluid: Two-loop approximation

AU - Hnatič, Michal

AU - Gulitskiy, Nikolay M.

AU - Lučivjanský, Tomáš

AU - Mižišin, Lukáš

AU - Škultéty, Viktor

PY - 2019/1/1

Y1 - 2019/1/1

N2 - A model of fully developed turbulence of a compressible fluid is briefly reviewed. It is assumed that fluid dynamics is governed by a stochastic version of Navier-Stokes equation. We show how corresponding field theoretic-model can be obtained and further analyzed by means of the perturbative renormalization group. Two fixed points of the RG equations are found. The perturbation theory is constructed within formal expansion scheme in parameter y, which describes scaling behavior of random force fluctuations. Actual calculations for fixed points’ coordinates are performed to two-loop order.

AB - A model of fully developed turbulence of a compressible fluid is briefly reviewed. It is assumed that fluid dynamics is governed by a stochastic version of Navier-Stokes equation. We show how corresponding field theoretic-model can be obtained and further analyzed by means of the perturbative renormalization group. Two fixed points of the RG equations are found. The perturbation theory is constructed within formal expansion scheme in parameter y, which describes scaling behavior of random force fluctuations. Actual calculations for fixed points’ coordinates are performed to two-loop order.

KW - Anomalous scaling

KW - Compressibility

KW - Field-theoretic renormalization group

KW - Stochastic Navier-Stokes equation

UR - http://www.scopus.com/inward/record.url?scp=85067243450&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-15297-0_16

DO - 10.1007/978-3-030-15297-0_16

M3 - Conference contribution

AN - SCOPUS:85067243450

SN - 9783030152963

T3 - Springer Proceedings in Complexity

SP - 175

EP - 187

BT - 11th Chaotic Modeling and Simulation International Conference, 2018

A2 - Skiadas, Christos H.

A2 - Lubashevsky, Ihor

PB - Springer Nature

T2 - 11th International Conference on Chaotic Modeling, Simulation and Applications, CHAOS 2018

Y2 - 5 June 2018 through 8 June 2018

ER -

ID: 51078836