Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › Рецензирование
In recent applications, first-order optimization methods are often applied in the non-stationary setting when the minimum point is drifting in time, addressing a so-called parameter tracking, or non-stationary optimization (NSO) problem. In this paper, we propose a new method for NSO derived from Nesterov's Fast Gradient. We derive theoretical bounds on the expected estimation error. We illustrate our results with simulation showing that the proposed method gives more accurate estimates of the minimum points than the unmodified Fast Gradient or Stochastic Gradient in case of deterministic drift while in purely random walk all methods behave similarly. The proposed method can be used to train convolutional neural networks to obtain super-resolution of digital surface models.
Язык оригинала | английский |
---|---|
Название основной публикации | 2019 American Control Conference, ACC 2019 |
Издатель | Institute of Electrical and Electronics Engineers Inc. |
Страницы | 1476-1481 |
ISBN (печатное издание) | 9781538679265 |
Состояние | Опубликовано - 1 июл 2019 |
Событие | 2019 American Control Conference, ACC 2019 - Philadelphia, Соединенные Штаты Америки Продолжительность: 10 июл 2019 → 12 июл 2019 |
Название | Proceedings of the American Control Conference |
---|---|
Том | 2019-July |
ISSN (печатное издание) | 0743-1619 |
конференция | 2019 American Control Conference, ACC 2019 |
---|---|
Страна/Tерритория | Соединенные Штаты Америки |
Город | Philadelphia |
Период | 10/07/19 → 12/07/19 |
ID: 46583267