Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › Рецензирование
A stochastic approximation problem is considered in the situation when the unknown regression function is measured not at the previous estimate but,; at its, slightly excited position. Errors of measurement are allowed to be either nonrandom or random with an arbitrary kind of dependence, and the zero-mean conditions is not imposed. Two estimation algorithms for estimate the root and the minimum point of regression function with projection is proposed. It is shown that the sequence of estimates {x(n)} obtained converges to the true value theta as sure and in the mean square sense. Sequence of estimates has asymptotic normality distribution when we can propose some more about errors of measurement.
Язык оригинала | Английский |
---|---|
Название основной публикации | CONTROL OF OSCILLATIONS AND CHAOS, VOLS 1-3, PROCEEDINGS |
Редакторы | FL Chernousko, AL Fradkov |
Издатель | IEEE Canada |
Страницы | 146-149 |
Число страниц | 4 |
ISBN (печатное издание) | 0-7803-6434-1 |
Состояние | Опубликовано - 2000 |
Событие | 2nd International Conference on Control of Oscillations and Chaos - ST PETERSBURG Продолжительность: 5 июл 2000 → 7 июл 2000 |
конференция | 2nd International Conference on Control of Oscillations and Chaos |
---|---|
Город | ST PETERSBURG |
Период | 5/07/00 → 7/07/00 |
ID: 4404899