Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
We develop statistical mechanics for stochastic growth processes and apply it to Laplacian growth by using its remarkable connection with a random matrix theory. The Laplacian growth equation is obtained from the variation principle and describes adiabatic (quasistatic) thermodynamic processes in the two-dimensional Dyson gas. By using Einstein's theory of thermodynamic fluctuations we consider transitional probabilities between thermodynamic states, which are in a one-to-one correspondence with simply connected domains occupied by gas. Transitions between these domains are described by the stochastic Laplacian growth equation, while the transitional probabilities coincide with a free-particle propagator on an infinite-dimensional complex manifold with a Kähler metric.
| Язык оригинала | английский |
|---|---|
| Номер статьи | 010103 |
| Журнал | Physical Review E |
| Том | 96 |
| Номер выпуска | 1 |
| DOI | |
| Состояние | Опубликовано - 20 июл 2017 |
ID: 36351758