DOI

The paper determines the number of states in a deterministic finite automaton (DFA) necessary to represent “unambiguous” variants of the union, concatenation, and Kleene star operations on formal languages. For the disjoint union of languages represented by an m-state and an n-state DFA, the state complexity is mn - 1 for the unambiguous concatenation, it is known to be m2n-1 - 2n-2 (Daley et al. “Orthogonal concatenation: Language equations and state complexity”, J. UCS, 2010), and this paper shows that this number of states is necessary already over a binary alphabet; for the unambiguous star, the state complexity function is determined to be 3/8 2n+1. In the case of a unary alphabet, disjoint union requires up to 1/2 mn states, unambiguous concatenation has state complexity m + n-2, and unambiguous star requires n-2 states in the worst case.

Язык оригиналаанглийский
Название основной публикацииDescriptional Complexity of Formal Systems - 20th IFIP WG 1.02 International Conference, DCFS 2018, Proceedings
ИздательSpringer Nature
Страницы188-199
Число страниц12
ISBN (печатное издание)9783319946306
DOI
СостояниеОпубликовано - 1 янв 2018
Событие20th IFIP WG 1.02 International Conference on Descriptional Complexity of Formal Systems, DCFS 2018 - Halifax, Канада
Продолжительность: 25 июл 201827 июл 2018

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том10952 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференция20th IFIP WG 1.02 International Conference on Descriptional Complexity of Formal Systems, DCFS 2018
Страна/TерриторияКанада
ГородHalifax
Период25/07/1827/07/18

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 33856917