DOI

The number of states in a deterministic finite automaton (DFA) recognizing the language Lk, where L is regular language recognized by an n-state DFA, and k ≥ 2 is a constant, is shown to be at most n 2(k - 1) n and at least (n - k) 2(k - 1) (n - k) in the worst case, for every n > k and for every alphabet of at least six letters. Thus, the state complexity of Lk is Θ (n 2(k - 1) n). In the case k = 3 the corresponding state complexity function for L3 is determined as frac(6 n - 3, 8) 4n - (n - 1) 2n - n with the lower bound witnessed by automata over a four-letter alphabet. The nondeterministic state complexity of Lk is demonstrated to be n k. This bound is shown to be tight over a two-letter alphabet.

Язык оригиналаанглийский
Страницы (с-по)2377-2392
Число страниц16
ЖурналTheoretical Computer Science
Том410
Номер выпуска24-25
DOI
СостояниеОпубликовано - 28 мая 2009
Опубликовано для внешнего пользованияДа

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 41142479