DOI

The paper determines the number of states in a two-way deterministic finite automaton (2DFA) over a one-letter alphabet sufficient and in the worst case necessary to represent the results of the following operations: (i) intersection of an m-state 2DFA and an n-state 2DFA requires between m∈+∈n and m∈+∈n∈+∈1 states; (ii) union of an m-state 2DFA and an n-state 2DFA, between m∈+∈n and 2m∈+∈n∈+∈4 states; (iii) Kleene star of an n-state 2DFA, (g(n)∈+∈O(n))2 states, where is the maximum value of lcm(p 1, ..., p k ) for , known as Landau's function; (iv) k-th power of an n-state 2DFA, between (k∈-∈1)g(n)∈-∈k and k(g(n)∈+∈n) states; (v) concatenation of an m-state and an n-state 2DFAs, states.

Язык оригиналаанглийский
Название основной публикацииDescriptional Complexity of Formal Systems - 13th International Workshop, DCFS 2011, Proceedings
Страницы222-234
Число страниц13
DOI
СостояниеОпубликовано - 11 авг 2011
Событие13th International Workshop of Descriptional Complexity of Formal Systems, DCFS 2011 - Giessen/Limburg, Германия
Продолжительность: 25 июл 201127 июл 2011

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том6808 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференция13th International Workshop of Descriptional Complexity of Formal Systems, DCFS 2011
Страна/TерриторияГермания
ГородGiessen/Limburg
Период25/07/1127/07/11

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 41143605