DOI

The sudden onset and quick development of an unknown epidemic may lead to tragic consequences: panic of population due to victims and unpreparedness of authorities for effectively help to population. These circumstances define extremely high requirements to the tools for short-term operational forecast. Namely, such tools should provide reliable results when model of phenomenon is unknown (factors of disease spreading) and data are limited (time series of observations). GMDH-based algorithms just meet these requirements unlike modern differential or advanced statistical models. In this study we test different algorithms from GMDH Shell platform on the example of Covid-19 epidemic in Moscow during the period March 30-April 12, 2020. The forecast horizon is from 1 to 7 days, the initial information is only the official dynamics of diseased patients. Our model is autoregression with variables of different powers. The results of forecast are compared with the accuracy of popular statistical autoregression using exponential smoothing with trend. We suppose that the proposed approach will be useful for short-term forecast at the start of epidemic due to its simplicity and reliability.

Язык оригиналаанглийский
Название основной публикации2020 IEEE 15th International Scientific and Technical Conference on Computer Sciences and Information Technologies, CSIT 2020 - Proceedings
Страницы5-8
Число страниц4
ISBN (электронное издание)9781728174433
DOI
СостояниеОпубликовано - 23 сен 2020
Событие15th IEEE International Scientific and Technical Conference on Computer Sciences and Information Technologies, CSIT 2020 - Lviv-Zbarazh, Украина
Продолжительность: 23 сен 202026 сен 2020

Серия публикаций

НазваниеInternational Scientific and Technical Conference on Computer Sciences and Information Technologies
Том2
ISSN (печатное издание)2766-3655
ISSN (электронное издание)2766-3639

конференция

конференция15th IEEE International Scientific and Technical Conference on Computer Sciences and Information Technologies, CSIT 2020
Страна/TерриторияУкраина
ГородLviv-Zbarazh
Период23/09/2026/09/20

    Предметные области Scopus

  • Компьютерные сети и коммуникации
  • Информационные системы
  • Информационные системы и управление

ID: 88242386