Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Stability of autoresonance models subject to random perturbations for systems of nonlinear oscillation equations. / Sultanov, O. A.
в: Computational Mathematics and Mathematical Physics, Том 54, № 1, 01.01.2014, стр. 59-73.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Stability of autoresonance models subject to random perturbations for systems of nonlinear oscillation equations
AU - Sultanov, O. A.
PY - 2014/1/1
Y1 - 2014/1/1
N2 - Systems of differential equations arising in the theory of nonlinear oscillations in resonance-related problems are considered. Of special interest are solutions whose amplitude increases without bound with time. Specifically, such solutions correspond to autoresonance. The stability of autoresonance solutions with respect to random perturbations is analyzed. The classes of admissible perturbations are described. The results rely on information on Lyapunov functions for the unperturbed equations. © 2014 Pleiades Publishing, Ltd.
AB - Systems of differential equations arising in the theory of nonlinear oscillations in resonance-related problems are considered. Of special interest are solutions whose amplitude increases without bound with time. Specifically, such solutions correspond to autoresonance. The stability of autoresonance solutions with respect to random perturbations is analyzed. The classes of admissible perturbations are described. The results rely on information on Lyapunov functions for the unperturbed equations. © 2014 Pleiades Publishing, Ltd.
KW - autoresonance
KW - Lyapunov function method
KW - random perturbations
KW - stability of solutions
KW - systems of nonlinear oscillation equations
UR - http://www.scopus.com/inward/record.url?scp=84894607070&partnerID=8YFLogxK
U2 - 10.1134/S0965542514010126
DO - 10.1134/S0965542514010126
M3 - Article
AN - SCOPUS:84894607070
VL - 54
SP - 59
EP - 73
JO - Computational Mathematics and Mathematical Physics
JF - Computational Mathematics and Mathematical Physics
SN - 0965-5425
IS - 1
ER -
ID: 126273576