Standard

Stability of a class of functional-differential Ito equations. / Gelig, A. Kh; Elkhimova, Yu V.; Churilov, A. N.

в: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, № 2, 01.04.1994, стр. 3-9.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Gelig, AK, Elkhimova, YV & Churilov, AN 1994, 'Stability of a class of functional-differential Ito equations', Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, № 2, стр. 3-9.

APA

Gelig, A. K., Elkhimova, Y. V., & Churilov, A. N. (1994). Stability of a class of functional-differential Ito equations. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, (2), 3-9.

Vancouver

Gelig AK, Elkhimova YV, Churilov AN. Stability of a class of functional-differential Ito equations. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 1994 Апр. 1;(2):3-9.

Author

Gelig, A. Kh ; Elkhimova, Yu V. ; Churilov, A. N. / Stability of a class of functional-differential Ito equations. в: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 1994 ; № 2. стр. 3-9.

BibTeX

@article{c944677c338242329b3d9aeea1e4eaa6,
title = "Stability of a class of functional-differential Ito equations",
abstract = "A functional-differential Ito equation is considered to describe control systems with pulsed modulation. By using the averaging method, sufficient frequency conditions are obtained for stochastic stability under any initial conditions. Noncritical and critical cases of one zero root are considered.",
author = "Gelig, {A. Kh} and Elkhimova, {Yu V.} and Churilov, {A. N.}",
year = "1994",
month = apr,
day = "1",
language = "русский",
pages = "3--9",
journal = "ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ",
issn = "1025-3106",
publisher = "Издательство Санкт-Петербургского университета",
number = "2",

}

RIS

TY - JOUR

T1 - Stability of a class of functional-differential Ito equations

AU - Gelig, A. Kh

AU - Elkhimova, Yu V.

AU - Churilov, A. N.

PY - 1994/4/1

Y1 - 1994/4/1

N2 - A functional-differential Ito equation is considered to describe control systems with pulsed modulation. By using the averaging method, sufficient frequency conditions are obtained for stochastic stability under any initial conditions. Noncritical and critical cases of one zero root are considered.

AB - A functional-differential Ito equation is considered to describe control systems with pulsed modulation. By using the averaging method, sufficient frequency conditions are obtained for stochastic stability under any initial conditions. Noncritical and critical cases of one zero root are considered.

UR - http://www.scopus.com/inward/record.url?scp=0028420621&partnerID=8YFLogxK

M3 - статья

AN - SCOPUS:0028420621

SP - 3

EP - 9

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

SN - 1025-3106

IS - 2

ER -

ID: 41070769