Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Stabbing circles for sets of segments in the plane. / Claverol, Mercè; Khramtcova, Elena; Papadopoulou, Evanthia; Saumell, Maria; Seara, Carlos.
LATIN 2016: Theoretical Informatics - 12th Latin American Symposium, Proceedings. ред. / Gonzalo Navarro; Evangelos Kranakis; Edgar Chávez. Springer Nature, 2016. стр. 290-305 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Том 9644).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - Stabbing circles for sets of segments in the plane
AU - Claverol, Mercè
AU - Khramtcova, Elena
AU - Papadopoulou, Evanthia
AU - Saumell, Maria
AU - Seara, Carlos
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Stabbing a set S of n segments in the plane by a line is a wellknown problem. In this paper we consider the variation where the stabbing object is a circle instead of a line.We show that the problem is tightly connected to cluster Voronoi diagrams, in particular, the Hausdorff and the farthest-color Voronoi diagram. Based on these diagrams, we provide a method to compute all the combinatorially different stabbing circles for S, and the stabbing circles with maximum and minimum radius. We give conditions under which our method is fast. These conditions are satisfied if the segments in S are parallel, resulting in a O(n log2 n) time algorithm. We also observe that the stabbing circle problem for S can be solved in optimal O(n2) time and space by reducing the problem to computing the stabbing planes for a set of segments in 3D.
AB - Stabbing a set S of n segments in the plane by a line is a wellknown problem. In this paper we consider the variation where the stabbing object is a circle instead of a line.We show that the problem is tightly connected to cluster Voronoi diagrams, in particular, the Hausdorff and the farthest-color Voronoi diagram. Based on these diagrams, we provide a method to compute all the combinatorially different stabbing circles for S, and the stabbing circles with maximum and minimum radius. We give conditions under which our method is fast. These conditions are satisfied if the segments in S are parallel, resulting in a O(n log2 n) time algorithm. We also observe that the stabbing circle problem for S can be solved in optimal O(n2) time and space by reducing the problem to computing the stabbing planes for a set of segments in 3D.
UR - http://www.scopus.com/inward/record.url?scp=84961720031&partnerID=8YFLogxK
U2 - 10.1007/978-3-662-49529-2_22
DO - 10.1007/978-3-662-49529-2_22
M3 - Conference contribution
AN - SCOPUS:84961720031
SN - 9783662495285
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 290
EP - 305
BT - LATIN 2016
A2 - Navarro, Gonzalo
A2 - Kranakis, Evangelos
A2 - Chávez, Edgar
PB - Springer Nature
T2 - 12th Latin American Symposium on Theoretical Informatics, LATIN 2016
Y2 - 11 April 2016 through 15 April 2016
ER -
ID: 38614548