Standard

Spodium bonding to anticrown-Hg3 boosts phosphorescence of cyclometalated-PtII complexes. / Рожков, Антон Викторович; Катленок, Евгений Анатольевич; Жмыхова, Маргарита Владимировна; Кузнецов, Максим Леонидович; Хрусталев, Виктор Н.; Тугашов, Кирилл; Бокач, Надежда Арсеньевна; Кукушкин, Вадим Юрьевич.

в: Inorganic Chemistry Frontiers, Том 10, № 2, 02.2023, стр. 493-510.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Рожков, АВ, Катленок, ЕА, Жмыхова, МВ, Кузнецов, МЛ, Хрусталев, ВН, Тугашов, К, Бокач, НА & Кукушкин, ВЮ 2023, 'Spodium bonding to anticrown-Hg3 boosts phosphorescence of cyclometalated-PtII complexes', Inorganic Chemistry Frontiers, Том. 10, № 2, стр. 493-510. https://doi.org/10.1039/d2qi02047e

APA

Рожков, А. В., Катленок, Е. А., Жмыхова, М. В., Кузнецов, М. Л., Хрусталев, В. Н., Тугашов, К., Бокач, Н. А., & Кукушкин, В. Ю. (2023). Spodium bonding to anticrown-Hg3 boosts phosphorescence of cyclometalated-PtII complexes. Inorganic Chemistry Frontiers, 10(2), 493-510. https://doi.org/10.1039/d2qi02047e

Vancouver

Рожков АВ, Катленок ЕА, Жмыхова МВ, Кузнецов МЛ, Хрусталев ВН, Тугашов К и пр. Spodium bonding to anticrown-Hg3 boosts phosphorescence of cyclometalated-PtII complexes. Inorganic Chemistry Frontiers. 2023 Февр.;10(2):493-510. https://doi.org/10.1039/d2qi02047e

Author

Рожков, Антон Викторович ; Катленок, Евгений Анатольевич ; Жмыхова, Маргарита Владимировна ; Кузнецов, Максим Леонидович ; Хрусталев, Виктор Н. ; Тугашов, Кирилл ; Бокач, Надежда Арсеньевна ; Кукушкин, Вадим Юрьевич. / Spodium bonding to anticrown-Hg3 boosts phosphorescence of cyclometalated-PtII complexes. в: Inorganic Chemistry Frontiers. 2023 ; Том 10, № 2. стр. 493-510.

BibTeX

@article{108c6998fac6454d9176a909e019b0c3,
title = "Spodium bonding to anticrown-Hg3 boosts phosphorescence of cyclometalated-PtII complexes",
abstract = "The moderately phosphorescent platinum(ii) complexes [Pt(ppy)(acac)] (1; ppyH = 2-phenylpyridine, acacH = acetylacetone), [Pt(ppy)(hd)] (2; hdH = heptanedione-3,5), [Pt(ppy)(tmhd)] (3; tmhdH = 2,2,6,6-tetramethylheptanedione-3,5), [Pt(dfppy)(acac)] (4; dfppyH = 2-(2′,4′-difluorophenyl)pyridine), and [Pt(dfppy)(tmhd)] (5) were precipitated on cocrystallization with anticrown Hg 3(1,2-C 6F 4) 3 (Hg3) to give Hg II-Pt II stacked heteroplanar architectures (1-3)·Hg3 and (4-5)·Hg3·Me 2CO. Synchrotron X-ray diffraction studies of these cocrystals along with in-depth theoretical density functional theory (DFT; PBE0-D3BJ) calculations, employing a set of computational tools (QTAIM, ELF, IGMH, MEP, CDF, ETS-NOCV, and SAPT methods), allowed the recognition of the spodium bonds Hg⋯Pt and Hg⋯C (the former is significantly stronger than the latter) as the stacking-directing contacts. The major part (57%) of the total interaction energy between 3 and Hg3 (−32.9 kcal mol −1), as a model system, comes from Hg⋯Pt bonding. Heteroplanar stacking is mostly controlled by dispersion and electrostatic forces, but the d z 2 (Pt) → σ*(Hg-C) charge transfer also provides a noticeable contribution; Hg II functions as an electrophilic component of the Hg⋯Pt and Hg⋯C contacts. The spodium bond-driven supramolecular integration provides enhanced phosphorescence lifetimes and up to 6-fold solid-state quantum yield enhancement for all cocrystals compared to the parent Pt II species. Appropriate DFT studies along with the analysis of calculated radiative and nonradiative decay rate constants indicate that the heteroplanar stacking reduces the population of the 3MC state, thus increasing the quantum yield. ",
author = "Рожков, {Антон Викторович} and Катленок, {Евгений Анатольевич} and Жмыхова, {Маргарита Владимировна} and Кузнецов, {Максим Леонидович} and Хрусталев, {Виктор Н.} and Кирилл Тугашов and Бокач, {Надежда Арсеньевна} and Кукушкин, {Вадим Юрьевич}",
note = "Publisher Copyright: {\textcopyright} 2022 The Royal Society of Chemistry.",
year = "2023",
month = feb,
doi = "10.1039/d2qi02047e",
language = "English",
volume = "10",
pages = "493--510",
journal = "Inorganic Chemistry Frontiers",
issn = "2052-1545",
publisher = "Royal Society of Chemistry",
number = "2",

}

RIS

TY - JOUR

T1 - Spodium bonding to anticrown-Hg3 boosts phosphorescence of cyclometalated-PtII complexes

AU - Рожков, Антон Викторович

AU - Катленок, Евгений Анатольевич

AU - Жмыхова, Маргарита Владимировна

AU - Кузнецов, Максим Леонидович

AU - Хрусталев, Виктор Н.

AU - Тугашов, Кирилл

AU - Бокач, Надежда Арсеньевна

AU - Кукушкин, Вадим Юрьевич

N1 - Publisher Copyright: © 2022 The Royal Society of Chemistry.

PY - 2023/2

Y1 - 2023/2

N2 - The moderately phosphorescent platinum(ii) complexes [Pt(ppy)(acac)] (1; ppyH = 2-phenylpyridine, acacH = acetylacetone), [Pt(ppy)(hd)] (2; hdH = heptanedione-3,5), [Pt(ppy)(tmhd)] (3; tmhdH = 2,2,6,6-tetramethylheptanedione-3,5), [Pt(dfppy)(acac)] (4; dfppyH = 2-(2′,4′-difluorophenyl)pyridine), and [Pt(dfppy)(tmhd)] (5) were precipitated on cocrystallization with anticrown Hg 3(1,2-C 6F 4) 3 (Hg3) to give Hg II-Pt II stacked heteroplanar architectures (1-3)·Hg3 and (4-5)·Hg3·Me 2CO. Synchrotron X-ray diffraction studies of these cocrystals along with in-depth theoretical density functional theory (DFT; PBE0-D3BJ) calculations, employing a set of computational tools (QTAIM, ELF, IGMH, MEP, CDF, ETS-NOCV, and SAPT methods), allowed the recognition of the spodium bonds Hg⋯Pt and Hg⋯C (the former is significantly stronger than the latter) as the stacking-directing contacts. The major part (57%) of the total interaction energy between 3 and Hg3 (−32.9 kcal mol −1), as a model system, comes from Hg⋯Pt bonding. Heteroplanar stacking is mostly controlled by dispersion and electrostatic forces, but the d z 2 (Pt) → σ*(Hg-C) charge transfer also provides a noticeable contribution; Hg II functions as an electrophilic component of the Hg⋯Pt and Hg⋯C contacts. The spodium bond-driven supramolecular integration provides enhanced phosphorescence lifetimes and up to 6-fold solid-state quantum yield enhancement for all cocrystals compared to the parent Pt II species. Appropriate DFT studies along with the analysis of calculated radiative and nonradiative decay rate constants indicate that the heteroplanar stacking reduces the population of the 3MC state, thus increasing the quantum yield.

AB - The moderately phosphorescent platinum(ii) complexes [Pt(ppy)(acac)] (1; ppyH = 2-phenylpyridine, acacH = acetylacetone), [Pt(ppy)(hd)] (2; hdH = heptanedione-3,5), [Pt(ppy)(tmhd)] (3; tmhdH = 2,2,6,6-tetramethylheptanedione-3,5), [Pt(dfppy)(acac)] (4; dfppyH = 2-(2′,4′-difluorophenyl)pyridine), and [Pt(dfppy)(tmhd)] (5) were precipitated on cocrystallization with anticrown Hg 3(1,2-C 6F 4) 3 (Hg3) to give Hg II-Pt II stacked heteroplanar architectures (1-3)·Hg3 and (4-5)·Hg3·Me 2CO. Synchrotron X-ray diffraction studies of these cocrystals along with in-depth theoretical density functional theory (DFT; PBE0-D3BJ) calculations, employing a set of computational tools (QTAIM, ELF, IGMH, MEP, CDF, ETS-NOCV, and SAPT methods), allowed the recognition of the spodium bonds Hg⋯Pt and Hg⋯C (the former is significantly stronger than the latter) as the stacking-directing contacts. The major part (57%) of the total interaction energy between 3 and Hg3 (−32.9 kcal mol −1), as a model system, comes from Hg⋯Pt bonding. Heteroplanar stacking is mostly controlled by dispersion and electrostatic forces, but the d z 2 (Pt) → σ*(Hg-C) charge transfer also provides a noticeable contribution; Hg II functions as an electrophilic component of the Hg⋯Pt and Hg⋯C contacts. The spodium bond-driven supramolecular integration provides enhanced phosphorescence lifetimes and up to 6-fold solid-state quantum yield enhancement for all cocrystals compared to the parent Pt II species. Appropriate DFT studies along with the analysis of calculated radiative and nonradiative decay rate constants indicate that the heteroplanar stacking reduces the population of the 3MC state, thus increasing the quantum yield.

UR - http://www.scopus.com/inward/record.url?scp=85143528084&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/3f193aa0-6741-3c86-9ab2-3b85a4c38889/

U2 - 10.1039/d2qi02047e

DO - 10.1039/d2qi02047e

M3 - Article

VL - 10

SP - 493

EP - 510

JO - Inorganic Chemistry Frontiers

JF - Inorganic Chemistry Frontiers

SN - 2052-1545

IS - 2

ER -

ID: 100731538