Standard

SPLINTS OF ROOT SYSTEMS FOR SPECIAL LIE SUBALGEBRAS. / Lyakhovsky, V.D.; Nazarov, A.A.; Kakin, P.I.

в: Theoretical and Mathematical Physics, Том 185, № 1, 2015, стр. 1471-1480.

Результаты исследований: Научные публикации в периодических изданияхстатья

Harvard

Lyakhovsky, VD, Nazarov, AA & Kakin, PI 2015, 'SPLINTS OF ROOT SYSTEMS FOR SPECIAL LIE SUBALGEBRAS', Theoretical and Mathematical Physics, Том. 185, № 1, стр. 1471-1480. https://doi.org/10.1007/s11232-015-0356-1

APA

Lyakhovsky, V. D., Nazarov, A. A., & Kakin, P. I. (2015). SPLINTS OF ROOT SYSTEMS FOR SPECIAL LIE SUBALGEBRAS. Theoretical and Mathematical Physics, 185(1), 1471-1480. https://doi.org/10.1007/s11232-015-0356-1

Vancouver

Lyakhovsky VD, Nazarov AA, Kakin PI. SPLINTS OF ROOT SYSTEMS FOR SPECIAL LIE SUBALGEBRAS. Theoretical and Mathematical Physics. 2015;185(1):1471-1480. https://doi.org/10.1007/s11232-015-0356-1

Author

Lyakhovsky, V.D. ; Nazarov, A.A. ; Kakin, P.I. / SPLINTS OF ROOT SYSTEMS FOR SPECIAL LIE SUBALGEBRAS. в: Theoretical and Mathematical Physics. 2015 ; Том 185, № 1. стр. 1471-1480.

BibTeX

@article{dde8dd691cad4e98b6b4bfef1a934c8c,
title = "SPLINTS OF ROOT SYSTEMS FOR SPECIAL LIE SUBALGEBRAS",
abstract = "We consider special embeddings of a Lie subalgebra into simple Lie algebras. We classify the projections of algebra root systems and obtain the conditions under which a splint appears and the branching coefficients coincide with the weight multiplicities. Although such a coincidence is infrequent, it turns out to be connected with the Gelfand–Tsetlin basis.",
author = "V.D. Lyakhovsky and A.A. Nazarov and P.I. Kakin",
year = "2015",
doi = "10.1007/s11232-015-0356-1",
language = "English",
volume = "185",
pages = "1471--1480",
journal = "Theoretical and Mathematical Physics (Russian Federation)",
issn = "0040-5779",
publisher = "Springer Nature",
number = "1",

}

RIS

TY - JOUR

T1 - SPLINTS OF ROOT SYSTEMS FOR SPECIAL LIE SUBALGEBRAS

AU - Lyakhovsky, V.D.

AU - Nazarov, A.A.

AU - Kakin, P.I.

PY - 2015

Y1 - 2015

N2 - We consider special embeddings of a Lie subalgebra into simple Lie algebras. We classify the projections of algebra root systems and obtain the conditions under which a splint appears and the branching coefficients coincide with the weight multiplicities. Although such a coincidence is infrequent, it turns out to be connected with the Gelfand–Tsetlin basis.

AB - We consider special embeddings of a Lie subalgebra into simple Lie algebras. We classify the projections of algebra root systems and obtain the conditions under which a splint appears and the branching coefficients coincide with the weight multiplicities. Although such a coincidence is infrequent, it turns out to be connected with the Gelfand–Tsetlin basis.

U2 - 10.1007/s11232-015-0356-1

DO - 10.1007/s11232-015-0356-1

M3 - Article

VL - 185

SP - 1471

EP - 1480

JO - Theoretical and Mathematical Physics (Russian Federation)

JF - Theoretical and Mathematical Physics (Russian Federation)

SN - 0040-5779

IS - 1

ER -

ID: 3949067