Standard

Spline-Wavelet Coarsening of Courant-Type Approximations. / Dem'yanovich, Y.K.; Romanovski, L.M.

в: Journal of Mathematical Sciences, № 4, 2014, стр. 414-431.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Dem'yanovich, YK & Romanovski, LM 2014, 'Spline-Wavelet Coarsening of Courant-Type Approximations', Journal of Mathematical Sciences, № 4, стр. 414-431. https://doi.org/10.1007/s10958-014-1869-0

APA

Dem'yanovich, Y. K., & Romanovski, L. M. (2014). Spline-Wavelet Coarsening of Courant-Type Approximations. Journal of Mathematical Sciences, (4), 414-431. https://doi.org/10.1007/s10958-014-1869-0

Vancouver

Author

Dem'yanovich, Y.K. ; Romanovski, L.M. / Spline-Wavelet Coarsening of Courant-Type Approximations. в: Journal of Mathematical Sciences. 2014 ; № 4. стр. 414-431.

BibTeX

@article{a8aa26f236b14da19a73d3417c7e47e4,
title = "Spline-Wavelet Coarsening of Courant-Type Approximations",
abstract = "Spline-wavelet coarsening of Courant-type approximations (not necessarily piecewise-linear) is considered, and the wavelet decomposition of the corresponding embedded spaces is constructed. The coarsening suggested possesses the property of structure invariance and can be used for obtaining wavelet packages. The results presented are illustrated on model examples. {\textcopyright} 2014 Springer Science+Business Media New York.",
author = "Y.K. Dem'yanovich and L.M. Romanovski",
year = "2014",
doi = "10.1007/s10958-014-1869-0",
language = "English",
pages = "414--431",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - Spline-Wavelet Coarsening of Courant-Type Approximations

AU - Dem'yanovich, Y.K.

AU - Romanovski, L.M.

PY - 2014

Y1 - 2014

N2 - Spline-wavelet coarsening of Courant-type approximations (not necessarily piecewise-linear) is considered, and the wavelet decomposition of the corresponding embedded spaces is constructed. The coarsening suggested possesses the property of structure invariance and can be used for obtaining wavelet packages. The results presented are illustrated on model examples. © 2014 Springer Science+Business Media New York.

AB - Spline-wavelet coarsening of Courant-type approximations (not necessarily piecewise-linear) is considered, and the wavelet decomposition of the corresponding embedded spaces is constructed. The coarsening suggested possesses the property of structure invariance and can be used for obtaining wavelet packages. The results presented are illustrated on model examples. © 2014 Springer Science+Business Media New York.

U2 - 10.1007/s10958-014-1869-0

DO - 10.1007/s10958-014-1869-0

M3 - Article

SP - 414

EP - 431

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 4

ER -

ID: 7048138