Standard

Spin-wave stiffness in the Dzyaloshinskii-Moriya helimagnets Mn1-xFexSi. / Grigoriev, S. V.; Altynbaev, E. V.; Siegfried, S. A.; Pschenichnyi, K. A.; Menzel, D.; Heinemann, A.; Chaboussant, G.

в: Physical Review B, Том 97, № 2, 024409, 09.01.2018.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Grigoriev, SV, Altynbaev, EV, Siegfried, SA, Pschenichnyi, KA, Menzel, D, Heinemann, A & Chaboussant, G 2018, 'Spin-wave stiffness in the Dzyaloshinskii-Moriya helimagnets Mn1-xFexSi', Physical Review B, Том. 97, № 2, 024409. https://doi.org/10.1103/PhysRevB.97.024409

APA

Grigoriev, S. V., Altynbaev, E. V., Siegfried, S. A., Pschenichnyi, K. A., Menzel, D., Heinemann, A., & Chaboussant, G. (2018). Spin-wave stiffness in the Dzyaloshinskii-Moriya helimagnets Mn1-xFexSi. Physical Review B, 97(2), [024409]. https://doi.org/10.1103/PhysRevB.97.024409

Vancouver

Grigoriev SV, Altynbaev EV, Siegfried SA, Pschenichnyi KA, Menzel D, Heinemann A и пр. Spin-wave stiffness in the Dzyaloshinskii-Moriya helimagnets Mn1-xFexSi. Physical Review B. 2018 Янв. 9;97(2). 024409. https://doi.org/10.1103/PhysRevB.97.024409

Author

Grigoriev, S. V. ; Altynbaev, E. V. ; Siegfried, S. A. ; Pschenichnyi, K. A. ; Menzel, D. ; Heinemann, A. ; Chaboussant, G. / Spin-wave stiffness in the Dzyaloshinskii-Moriya helimagnets Mn1-xFexSi. в: Physical Review B. 2018 ; Том 97, № 2.

BibTeX

@article{fd5265e148354ea4aa3e10cb2dff0f22,
title = "Spin-wave stiffness in the Dzyaloshinskii-Moriya helimagnets Mn1-xFexSi",
abstract = "The small-angle neutron scattering is used to measure the spin-wave stiffness in the field-polarized state of the Dzyaloshinskii-Moriya helimagnets Mn1-xFexSi with x=0.03, 0.06, 0.09, and 0.10. The Mn1-xFexSi compounds are helically ordered below Tc and show a helical fluctuation regime above Tc in a wide range up to TDM. The critical temperatures Tc and TDM decrease with x and tend to 0 at x=0.11 and 0.17, respectively. We have found that the spin-wave stiffness A change weakly with temperature for each individual Fe-doped compound. On the other hand, the spin-wave stiffness A decreases with x duplicating the TDM dependence on x, rather than Tc(x). These findings classify the thermal phase transition in all Mn1-xFexSi compounds as an abrupt change in the spin state caused, most probably, by the features of an electronic band structure. Moreover, the criticality in these compounds is not related to the value of the ferromagnetic interaction but demonstrates the remarkable role of the Dzyaloshinskii-Moriya interaction as a factor destabilizing the magnetic order.",
keywords = "Spin-wave stiffness, Dzyaloshinskii-Moriya interaction, SANS",
author = "Grigoriev, {S. V.} and Altynbaev, {E. V.} and Siegfried, {S. A.} and Pschenichnyi, {K. A.} and D. Menzel and A. Heinemann and G. Chaboussant",
note = "Publisher Copyright: {\textcopyright} 2018 American Physical Society. Copyright: Copyright 2019 Elsevier B.V., All rights reserved.",
year = "2018",
month = jan,
day = "9",
doi = "10.1103/PhysRevB.97.024409",
language = "English",
volume = "97",
journal = "Physical Review B-Condensed Matter",
issn = "1098-0121",
publisher = "American Physical Society",
number = "2",

}

RIS

TY - JOUR

T1 - Spin-wave stiffness in the Dzyaloshinskii-Moriya helimagnets Mn1-xFexSi

AU - Grigoriev, S. V.

AU - Altynbaev, E. V.

AU - Siegfried, S. A.

AU - Pschenichnyi, K. A.

AU - Menzel, D.

AU - Heinemann, A.

AU - Chaboussant, G.

N1 - Publisher Copyright: © 2018 American Physical Society. Copyright: Copyright 2019 Elsevier B.V., All rights reserved.

PY - 2018/1/9

Y1 - 2018/1/9

N2 - The small-angle neutron scattering is used to measure the spin-wave stiffness in the field-polarized state of the Dzyaloshinskii-Moriya helimagnets Mn1-xFexSi with x=0.03, 0.06, 0.09, and 0.10. The Mn1-xFexSi compounds are helically ordered below Tc and show a helical fluctuation regime above Tc in a wide range up to TDM. The critical temperatures Tc and TDM decrease with x and tend to 0 at x=0.11 and 0.17, respectively. We have found that the spin-wave stiffness A change weakly with temperature for each individual Fe-doped compound. On the other hand, the spin-wave stiffness A decreases with x duplicating the TDM dependence on x, rather than Tc(x). These findings classify the thermal phase transition in all Mn1-xFexSi compounds as an abrupt change in the spin state caused, most probably, by the features of an electronic band structure. Moreover, the criticality in these compounds is not related to the value of the ferromagnetic interaction but demonstrates the remarkable role of the Dzyaloshinskii-Moriya interaction as a factor destabilizing the magnetic order.

AB - The small-angle neutron scattering is used to measure the spin-wave stiffness in the field-polarized state of the Dzyaloshinskii-Moriya helimagnets Mn1-xFexSi with x=0.03, 0.06, 0.09, and 0.10. The Mn1-xFexSi compounds are helically ordered below Tc and show a helical fluctuation regime above Tc in a wide range up to TDM. The critical temperatures Tc and TDM decrease with x and tend to 0 at x=0.11 and 0.17, respectively. We have found that the spin-wave stiffness A change weakly with temperature for each individual Fe-doped compound. On the other hand, the spin-wave stiffness A decreases with x duplicating the TDM dependence on x, rather than Tc(x). These findings classify the thermal phase transition in all Mn1-xFexSi compounds as an abrupt change in the spin state caused, most probably, by the features of an electronic band structure. Moreover, the criticality in these compounds is not related to the value of the ferromagnetic interaction but demonstrates the remarkable role of the Dzyaloshinskii-Moriya interaction as a factor destabilizing the magnetic order.

KW - Spin-wave stiffness

KW - Dzyaloshinskii-Moriya interaction

KW - SANS

UR - http://www.scopus.com/inward/record.url?scp=85040639319&partnerID=8YFLogxK

U2 - 10.1103/PhysRevB.97.024409

DO - 10.1103/PhysRevB.97.024409

M3 - Article

AN - SCOPUS:85040639319

VL - 97

JO - Physical Review B-Condensed Matter

JF - Physical Review B-Condensed Matter

SN - 1098-0121

IS - 2

M1 - 024409

ER -

ID: 76658688