Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
There are more than 70 million people worldwide who suffer from stuttering problems. This will affect the confidence of public speaking in people who suffer from this issue. To solve this problem many people take therapy sessions but the therapy sessions are a temporary solution, as soon as they leave therapy sessions this problem might arise again. This work aims to use state of the art machine learning algorithms that have improved over the past few years to solve this problem. We have used the dataset from UCLASS archives which provide the data for stuttered speech in.wav format with time-aligned transcriptions. We have tried different algorithms and optimized our model by hyper parameter tuning to maximize the model’s accuracy. The algorithm is tested on random speech data with low to heavy stuttering from the same dataset, and it is observed that there is significant reduction in the Word Error Rate (WER) for most of the test cases.
Язык оригинала | английский |
---|---|
Название основной публикации | Proceedings of the 11th International Conference on Computer Engineering and Networks |
Редакторы | Qi Liu, Xiaodong Liu, Bo Chen, Yiming Zhang, Jiansheng Peng |
Издатель | Springer Nature |
Страницы | 443-451 |
Число страниц | 9 |
ISBN (печатное издание) | 9789811665530 |
DOI | |
Состояние | Опубликовано - 2022 |
Событие | 11th International Conference on Computer Engineering and Networks, CENet2021 - Hechi, Китай Продолжительность: 21 окт 2021 → 25 окт 2021 |
Название | Lecture Notes in Electrical Engineering |
---|---|
Том | 808 LNEE |
ISSN (печатное издание) | 1876-1100 |
ISSN (электронное издание) | 1876-1119 |
конференция | 11th International Conference on Computer Engineering and Networks, CENet2021 |
---|---|
Страна/Tерритория | Китай |
Город | Hechi |
Период | 21/10/21 → 25/10/21 |
ID: 91234345