Standard

Some remarks on spectra of nuclear operators. / Рейнов, Олег Иванович.

в: Open Mathematics, Том 16, № 1, 26.04.2018, стр. 453-460.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

Рейнов, Олег Иванович. / Some remarks on spectra of nuclear operators. в: Open Mathematics. 2018 ; Том 16, № 1. стр. 453-460.

BibTeX

@article{28d794e0b8d1427c8c122f22bbb574ca,
title = "Some remarks on spectra of nuclear operators",
abstract = "We give criteria for the spectra of some nuclear operators in subspaces of quotients of L p-spaces to be central-symmetric, as well as for the spectra of linear operators in Banach spaces to be Z d-symmetric in the sense of B. Mityagin. Also, we present a short proof of a corresponding Mityagin's theorem. ",
keywords = "Approximation property, Eigenvalue, Fredholm determinant, Tensor product",
author = "Рейнов, {Олег Иванович}",
year = "2018",
month = apr,
day = "26",
doi = "10.1515/math-2018-0043",
language = "English",
volume = "16",
pages = "453--460",
journal = "Open Mathematics",
issn = "1895-1074",
publisher = "Versita",
number = "1",

}

RIS

TY - JOUR

T1 - Some remarks on spectra of nuclear operators

AU - Рейнов, Олег Иванович

PY - 2018/4/26

Y1 - 2018/4/26

N2 - We give criteria for the spectra of some nuclear operators in subspaces of quotients of L p-spaces to be central-symmetric, as well as for the spectra of linear operators in Banach spaces to be Z d-symmetric in the sense of B. Mityagin. Also, we present a short proof of a corresponding Mityagin's theorem.

AB - We give criteria for the spectra of some nuclear operators in subspaces of quotients of L p-spaces to be central-symmetric, as well as for the spectra of linear operators in Banach spaces to be Z d-symmetric in the sense of B. Mityagin. Also, we present a short proof of a corresponding Mityagin's theorem.

KW - Approximation property

KW - Eigenvalue

KW - Fredholm determinant

KW - Tensor product

UR - https://www.degruyter.com/view/j/math.2018.16.issue-1/math-2018-0043/math-2018-0043.xml

UR - http://www.scopus.com/inward/record.url?scp=85046533249&partnerID=8YFLogxK

U2 - 10.1515/math-2018-0043

DO - 10.1515/math-2018-0043

M3 - Article

VL - 16

SP - 453

EP - 460

JO - Open Mathematics

JF - Open Mathematics

SN - 1895-1074

IS - 1

ER -

ID: 26269687