DOI

In the paper, we present algorithms for minimization of d.c. functions (difference of two convex functions) on the whole space$$R^n$$. Many nonconvex optimization problems can be described using these functions. D.c. functions are used in various applications especially in optimization, but the problem to characterize them is not trivial, due to the fact that these functions are not differentiable and certainly are not convex. The class of these functions is contained in the class of quasidifferentiable functions. Proposed algorithms are based on known necessary optimality conditions and d.c. duality. Convergence to$$\inf $$ -stationary points is established under fairly general natural assumptions.

Язык оригиналаанглийский
Название основной публикацииComputational Science and Its Applications – ICCSA 2019
Подзаголовок основной публикации19th International Conference, Saint Petersburg, Russia, July 1–4, 2019, Proceedings, Part IV
РедакторыSanjay Misra, et al.
ИздательSpringer Nature
Страницы667–677
ISBN (печатное издание)9783030243043
DOI
СостояниеОпубликовано - 2019
Событие19th International Conference on Computational Science and Its Applications, ICCSA 2019 - Saint Petersburg, Российская Федерация
Продолжительность: 1 июл 20194 июл 2019
Номер конференции: 19

Серия публикаций

НазваниеLNCS
Том11622
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференция19th International Conference on Computational Science and Its Applications, ICCSA 2019
Сокращенное названиеICCSA 2019
Страна/TерриторияРоссийская Федерация
ГородSaint Petersburg
Период1/07/194/07/19

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 43545567