Standard

Some identities and P-splines. / Dem'yanovich, Yu K.; Petrov, V. F.

в: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, № 2, 01.01.2002, стр. 5-9.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Dem'yanovich, YK & Petrov, VF 2002, 'Some identities and P-splines', Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, № 2, стр. 5-9.

APA

Dem'yanovich, Y. K., & Petrov, V. F. (2002). Some identities and P-splines. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, (2), 5-9.

Vancouver

Dem'yanovich YK, Petrov VF. Some identities and P-splines. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 2002 Янв. 1;(2):5-9.

Author

Dem'yanovich, Yu K. ; Petrov, V. F. / Some identities and P-splines. в: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 2002 ; № 2. стр. 5-9.

BibTeX

@article{27a25cf4db8e46e587dcacc32e417720,
title = "Some identities and P-splines",
abstract = "The basic definitions of the (m,P)-splines and their characteristic polynomials P(t) are given. The case of an arbitrary irregular mesh is considered. The simple proofs of multiparameter identities relating to the (m,P)-splines are presented. These identities are the basis for study of properties of the (m,P)-splines.",
author = "Dem'yanovich, {Yu K.} and Petrov, {V. F.}",
year = "2002",
month = jan,
day = "1",
language = "русский",
pages = "5--9",
journal = "ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ",
issn = "1025-3106",
publisher = "Издательство Санкт-Петербургского университета",
number = "2",

}

RIS

TY - JOUR

T1 - Some identities and P-splines

AU - Dem'yanovich, Yu K.

AU - Petrov, V. F.

PY - 2002/1/1

Y1 - 2002/1/1

N2 - The basic definitions of the (m,P)-splines and their characteristic polynomials P(t) are given. The case of an arbitrary irregular mesh is considered. The simple proofs of multiparameter identities relating to the (m,P)-splines are presented. These identities are the basis for study of properties of the (m,P)-splines.

AB - The basic definitions of the (m,P)-splines and their characteristic polynomials P(t) are given. The case of an arbitrary irregular mesh is considered. The simple proofs of multiparameter identities relating to the (m,P)-splines are presented. These identities are the basis for study of properties of the (m,P)-splines.

UR - http://www.scopus.com/inward/record.url?scp=0036914824&partnerID=8YFLogxK

M3 - статья

AN - SCOPUS:0036914824

SP - 5

EP - 9

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

SN - 1025-3106

IS - 2

ER -

ID: 53484178