DOI

It is still not known whether a shortest common superstring (SCS) of n input strings can be found faster than in O*(2n) time (O*(̇) suppresses polynomial factors of the input length). In this short note, we show that for any constant r, SCS for strings of length at most r can be solved in time O*(2 (1-c(r))n) where c(r)=(1+2r2)-1. For this, we introduce so-called hierarchical graphs that allow us to reduce SCS on strings of length at most r to the directed rural postman problem on a graph with at most k=(1-c(r))n weakly connected components. One can then use a recent O*(2k) time algorithm by Gutin, Wahlström, and Yeo.

Язык оригиналаанглийский
Страницы (с-по)421-425
Число страниц5
ЖурналInformation Processing Letters
Том114
Номер выпуска8
DOI
СостояниеОпубликовано - авг 2014

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Обработка сигналов
  • Информационные системы
  • Прикладные компьютерные науки

ID: 49826155