A key component of DD (domain decomposition) solvers for hp discretizations of elliptic equations is the solver for the internal stiffness matrices of p-elements. We consider the algorithm of the linear complexity for solving such problems on spectral p-elements, which, therefore, in the leading DD solver plays the role of the second stage DD solver. It is based on the first order finite element preconditioning of the Orszag type for the reference element stiffness matrices. Earlier, for spectral elements, only fast solvers obtained with the use of special preconditioners in factored form were known. The most intricate part of the algorithm is the inter-subdomain Schur complement preconditioning by inexact iterative solver employing two preconditioners -- preconditioner-solver and preconditioner-multiplicator. From general point of view, the solver developed in the paper is the DD solver for the discretization on a strongly variable in size and shape deteriorating mesh with the number of subdomains growing with the growth of the number of degrees of freedom.

Язык оригиналаанглийский
Название основной публикацииSustainable Cities Development and Environment Protection IV
ИздательTrans Tech Publications Ltd
Страницы2312-2329
Число страниц18
ISBN (печатное издание)9783038351672
DOI
СостояниеОпубликовано - 2014
Событие4th International Conference on Civil Engineering, Architecture and Building Materials, CEABM 2014 - Haikou, Китай
Продолжительность: 24 мая 201425 мая 2014

Серия публикаций

НазваниеApplied Mechanics and Materials
Том587-589
ISSN (печатное издание)1660-9336
ISSN (электронное издание)1662-7482

конференция

конференция4th International Conference on Civil Engineering, Architecture and Building Materials, CEABM 2014
Страна/TерриторияКитай
ГородHaikou
Период24/05/1425/05/14

    Предметные области Scopus

  • Технология (все)

ID: 7062387