Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
A key component of DD (domain decomposition) solvers for hp discretizations of elliptic equations is the solver for the internal stiffness matrices of p-elements. We consider the algorithm of the linear complexity for solving such problems on spectral p-elements, which, therefore, in the leading DD solver plays the role of the second stage DD solver. It is based on the first order finite element preconditioning of the Orszag type for the reference element stiffness matrices. Earlier, for spectral elements, only fast solvers obtained with the use of special preconditioners in factored form were known. The most intricate part of the algorithm is the inter-subdomain Schur complement preconditioning by inexact iterative solver employing two preconditioners -- preconditioner-solver and preconditioner-multiplicator. From general point of view, the solver developed in the paper is the DD solver for the discretization on a strongly variable in size and shape deteriorating mesh with the number of subdomains growing with the growth of the number of degrees of freedom.
Язык оригинала | английский |
---|---|
Название основной публикации | Sustainable Cities Development and Environment Protection IV |
Издатель | Trans Tech Publications Ltd |
Страницы | 2312-2329 |
Число страниц | 18 |
ISBN (печатное издание) | 9783038351672 |
DOI | |
Состояние | Опубликовано - 2014 |
Событие | 4th International Conference on Civil Engineering, Architecture and Building Materials, CEABM 2014 - Haikou, Китай Продолжительность: 24 мая 2014 → 25 мая 2014 |
Название | Applied Mechanics and Materials |
---|---|
Том | 587-589 |
ISSN (печатное издание) | 1660-9336 |
ISSN (электронное издание) | 1662-7482 |
конференция | 4th International Conference on Civil Engineering, Architecture and Building Materials, CEABM 2014 |
---|---|
Страна/Tерритория | Китай |
Город | Haikou |
Период | 24/05/14 → 25/05/14 |
ID: 7062387