Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Solvability of the equivalent inclusion problem for an ellipsoidal inhomogeneity. / Freidin, Alexander B.; Kucher, Vladislav A.
в: Mathematics and Mechanics of Solids, Том 21, № 2, 2016, стр. 255-262.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Solvability of the equivalent inclusion problem for an ellipsoidal inhomogeneity
AU - Freidin, Alexander B.
AU - Kucher, Vladislav A.
PY - 2016
Y1 - 2016
N2 - The problem of an elastic ellipsoidal inhomogeneity in an infinite matrix is considered for the case of arbitrary anisotropy. Using the Fourier representation of Hill’s tensor, which we derive directly from the classical Eshelby solution for an ellipsoidal inclusion, and assuming certain conditions on the elasticity tensors, we prove the solvability of the Eshelby equivalent inclusion problem. This justifies a formula for the anisotropic polarization tensor for an ellipsoid
AB - The problem of an elastic ellipsoidal inhomogeneity in an infinite matrix is considered for the case of arbitrary anisotropy. Using the Fourier representation of Hill’s tensor, which we derive directly from the classical Eshelby solution for an ellipsoidal inclusion, and assuming certain conditions on the elasticity tensors, we prove the solvability of the Eshelby equivalent inclusion problem. This justifies a formula for the anisotropic polarization tensor for an ellipsoid
U2 - 10.1177/1081286515588636
DO - 10.1177/1081286515588636
M3 - Article
VL - 21
SP - 255
EP - 262
JO - Mathematics and Mechanics of Solids
JF - Mathematics and Mechanics of Solids
SN - 1081-2865
IS - 2
ER -
ID: 7564620