DOI

Using photoelectron diffraction and spectroscopy, we explore the structural and electronic properties of the hexagonal boron nitride (h-BN) monolayer epitaxially grown on the Co(0001) surface. Perfect matching of the lattice parameters allows formation of a well-defined interface where the B atoms occupy the hollow sites while the N atoms are located above the Co atoms. The corrugation of the h-BN monolayer and its distance from the substrate were determined by means of R-factor analysis. The obtained results are in perfect agreement with the density functional theory (DFT) predictions. The electronic structure of the interface is characterized by a significant mixing of the h-BN and Co states. Such hybridized states appear in the h-BN band gap. This allows to obtain atomically resolved scanning tunneling microscopy (STM) images from the formally insulating 2D material being in contact with ferromagnetic metal. The STM images reveal mainly the nitrogen sublattice due to a dominating contribution of nitrogen orbitals to the electronic states at the Fermi level. We believe that the high quality, well-defined structure and interesting electronic properties make the h-BN/Co(0001) interface suitable for spintronic applications.

Язык оригиналаанглийский
Номер статьи195438
Число страниц10
ЖурналPhysical Review B
Том98
Номер выпуска19
DOI
СостояниеОпубликовано - 26 ноя 2018

    Предметные области Scopus

  • Электроника, оптика и магнитные материалы
  • Физика конденсатов

ID: 36290120